Arsenite was shown to inhibit pyruvate dehydrogenase (PDH) activity through binding to vicinal dithiols in pure enzyme and tissue extract. However, no data are available on how arsenite inhibits PDH activity in human cells. The IC(50) values for arsenic trioxide (As(2)O(3)) to inhibit the PDH activity in porcine heart pure enzyme preparation and in human leukemia cell line HL60 cells were estimated to be 182 and 2 microM, respectively. Thus, As(2)O(3) inactivation of PDH activity was about 90 times more potent in HL60 cells than in purified enzyme preparation. The IC(50) values for As(2)O(3) and phenylarsine oxide to reduce the vicinal thiol content in HL60 cells were estimated to be 81.7 and 1.9 microM, respectively. Thus, As(2)O(3) is a potent PDH inhibitor but a weak vicinal thiol reacting agent in HL60 cells. Antioxidants but not dithiol compounds suppressed As(2)O(3) inhibition of PDH activity in HL60 cells. Conversely, dithiol compounds but not antioxidants suppressed the inhibition of PDH activity by phenylarsine oxide. As(2)O(3) increased H(2)O(2) level in HL60 cells, but this was not observed for phenylarsine oxide. Mitochondrial respiration inhibitors suppressed the As(2)O(3)-induced H(2)O(2) production and As(2)O(3) inhibition of PDH activity. Moreover, metal chelators ameliorated whereas Fenton metals aggravated As(2)O(3) inhibition of PDH activity. Treatment with H(2)O(2) plus Fenton metals also decreased the PDH activity in HL60 cells. Therefore, it seems that As(2)O(3) elevates H(2)O(2) production in mitochondria and this may produce hydroxyl through the Fenton reaction and result in oxidative damage to the protein of PDH. The present results suggest that arsenite may cause protein oxidation to inactivate an enzyme and this can occur at a much lower concentration than arsenite binding directly to the critical thiols.
Arsenic compounds are widely distributed and arsenic ingestion is associated with many human diseases, including blackfoot disease, atherosclerosis, and cancers. However, the underlying mechanism of arsenic toxicity is not understood. In human fibroblast cells (HFW), arsenite is known to induce oxidative damage, chromosome aberrations, cell cycle arrest, and aneuploidy, and the manifestation of these cellular responses is dependent on changes in gene expression which can be analyzed using the cDNA microarray technique. In this study, cDNA microarray membranes with 568 human genes were used to examine mRNA profile changes in HFW cells treated for 0 to 24 h with 5 microM sodium arsenite. On the basis of the mean value for three independent experiments, 133 target genes were selected for a 2 x 3 self-organizing map cluster analysis; 94 were found to be induced by arsenite treatment, whereas 39 were repressed. These genes were categorized as signal transduction, transcriptional regulation, cell cycle control, stress responses, proteolytic enzymes, and miscellaneous. Significant changes in the signaling-related and transcriptional regulation genes indicated that arsenite induces complex toxicopathological injury.
To establish a functional bipolar mitotic spindle, the centrosome expands and matures, acquiring enhanced activities for microtubule (MT) nucleation and assembly at the onset of mitosis. However, the regulatory mechanisms of centrosome maturation and MT assembly from the matured centrosome are largely unknown. In this study, we showed that heat shock protein (HSP) 70 considerably accumulates at the mitotic centrosome during prometaphase to metaphase and is required for bipolar spindle assembly. Inhibition or depletion of HSP70 impaired the function of mitotic centrosome and disrupted MT nucleation and polymerization from the spindle pole, and may thus result in formation of abnormal mitotic spindles. In addition, HSP70 may associate with NEDD1 and γ-tubulin, two pericentriolar material (PCM) components essential for centrosome maturation and MT nucleation. Loss of HSP70 function disrupted the interaction between NEDD1 and γ-tubulin, and reduced their accumulation at the mitotic centrosome. Our results thus demonstrate a role for HSP70 in regulating centrosome integrity during mitosis, and indicate that HSP70 is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle.
Arsenic compounds, which are well-documented human carcinogens, are now used in cancer therapy. Knowledge of the mechanism by which arsenic exerts its toxicity may help in designing a more effective regimen for therapy. In this study, we showed that arsenite could induce prominent mitotic arrest in CGL-2 cells and demonstrated the presence of damaged DNA in arsenite-arrested mitotic cells. We then explored why these cells with arsenite-induced DNA damage were arrested at mitosis instead of G2 stage. When synchronized CGL-2 cells were treated with arsenite at stage G1, S or G2, all progressed into, and arrested at, the mitotic stage and contained damaged DNA, as demonstrated by the appearance of the DNA double-strand break marker, phosphorylated histone H2A.X (gamma-H2AX). Since X-irradiation induced G2 arrest in CGL-2 cells, these cells clearly have a functional G2 DNA damage checkpoint. However, treatment of X-irradiated CGL-2 cells with arsenite resulted in a decrease in G2 cells and an increase in mitotic cells, suggesting that arsenite may inhibit activation of the G2 DNA damage checkpoint and thus allow cells with damaged DNA to proceed from G2 into mitosis. Immunoblot analysis confirmed that arsenite treatment reduced the X-irradiation-induced phosphorylation of both ataxia-telangiectasia, mutated at serine 1981 and Cdc25C at serine 216, events which are crucial for G2 checkpoint activation and G2 arrest. Moreover, a higher frequency of apoptotic cells is observed in mitotic CGL-2 cells arrested by arsenite than those arrested by nocodazole or taxol. Our results show that the combined effects of arsenite in inducing DNA damages, inhibiting the activation of G2 checkpoint, and arresting cells with damaged DNA in the mitotic stage may subsequently enhance the induction of apoptosis in arsenite-arrested mitotic CGL-2 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.