Well-defined polymer scaffolds convertible to (multi)functional polymer structures via selective and efficient modifications potentially provide an easy, versatile, and useful approach for a wide variety of applications. Considering this, a homopolymer scaffold, poly(pyridyldisulfide ethylmethacrylate) (poly(PDSM)), having pendant groups selectively reactive with thiols, was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Soluble polymers with controlled molecular weights and narrow PDIs were generated efficiently. The versatility of the scaffold to generate random co- and ter-polymers combining multiple functionalities with controlled-composition was shown by separate and simultaneous conjugation of different mercapto-compounds, including a tripeptide in one-step. Conversion of water-insoluble scaffold to peptide-containing water-soluble copolymers was observed to yield nanometer-size particles with narrow polydispersity. The overall results suggest that the well-defined PDSM homopolymer scaffold generated via RAFT polymerization can be a versatile building block for generation of new structures having potential for drug delivery applications via a straightforward synthetic approach.
N-(2-Hydroxypropyl)methacrylamide (HPMA) containing polymers that are widely used as anticancer drug carriers. We have synthesized new amphiphilic block copolymers of HPMA with a functional monomer 2-(2-pyridyldisulfide)ethylmethacrylate (PDSM) via reversible addition-fragmentation chain transfer (RAFT) polymerization. In a one-pot reaction, the versatility of PDS groups on poly(PDSM)- b-poly(HPMA) was used to conjugate an anticancer drug, doxorubicin (DOX), and also simultaneously crosslink the micellar assemblies via acid-cleavable hydrazone bonds and reducible disulfide bonds. DOX-conjugated crosslinked micelles with an average diameter of approximately 60 nm were observed to be formed in aqueous medium. Disintegration of the micelles into unimers in the presence of a disulfide reducing agent confirmed the crosslinking via disulfide bonds. While the release of DOX from the crosslinked micelles at pH 5.0 was faster compared to the release at pH 7.4, a high proportion of released DOX was found to retain the original active structure. Overall results demonstrate the simplicity and the versatility of the poly(PDSM)- b-poly(HPMA) system, which are potentially important in the design of new generation of polymer therapeutics.
Two RAFT agents, suitable for inducing living radical polymerization in water, have been synthesized. Both RAFT agents were shown to be effective over the temperature range 25-70 C. One RAFT agent was functionalized with a pyridyl disulfide group. RAFT efficacy was demonstrated for the polymerizations of N-isopropyl acrylamide (NIPAAM) and poly(ethylene oxide)-acrylate (PEG-A) in both water and acetonitrile. The kinetic data indicates that the pyridyl disulfide functionality is largely benign in free radical polymerizations, remaining intact for subsequent reaction with thiol groups. This result was confirmed by studying conventional radical polymerizations in the presence of hydroxyethyl pyridyl disulfide. The utility of the pyridyl disulfide functionality at the terminus of the polymers was demonstrated by synthesizing polymer-BSA conjugates. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.