Social media users internalise information in a multimodal context. Social media functions as a primary information source for disaster situational awareness encompassing texts, photographs, videos, and other multimodal information widely used in emergency management. Applying ensemble learning to social media sentiment analysis has garnered much scholarly attention, albeit with limited research on rescue and its sub-domain, which is characterised as a major complexity. A multimodal information categorisation model based on hierarchical feature extraction was proposed in this study. The information of multiple modes is first mapped to a unified text vector space in modelling the semantic content at the sentence and multimodal information levels in the multimodal information. Multiple deep learning (DL) models were subsequently applied to model the semantic content at the aforementioned levels. This study offers a BiLSTM-Attention-CNN-XGBOOST ensemble neural network model to acquire extensive multimodal information characteristics. Based on the empirical outcomes, this method precisely extracted multimodal information features with an accuracy exceeding 85% and 95% for Chinese-and English-language datasets, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.