The expression of long non-coding RNAs (lncRNAs) is dysregulated in hepatocellular carcinoma (HCC). However, the functions and contributions of lncRNAs remain largely unknown. Here, we identified a critical role of SNHG6-003 in HCC. We found that five SNHG6 transcripts were differentially expressed in HCC tissues while only the SNHG6-003 had an oncogenic function. Ectopic expression of SNHG6-003 in HCC cells promoted cell proliferation and induced drug resistance, whereas SNHG6-003 knockdown promoted apoptosis. Moreover, SNHG6-003 functioned as a competitive endogenous RNA (ceRNA), effectively becoming sponge for miR-26a/b and thereby modulating the expression of transforming growth factor-β-activated kinase 1 (TAK1). Importantly, expression analysis revealed that both SNHG6-003 and TAK1 were upregulated in human cancers, exhibiting a co-expression pattern. In HCC patients, high expression of SNHG6-003 closely correlated with tumor progression and shorter survival. Thus, targeting the ceRNA network involving SNHG6-003 may be used as a treatment strategy against HCC.
Long non-coding RNAs (lncRNAs) have recently been identified as critical regulators in tumor initiation and development. However, the function of lncRNAs in human hepatocellular carcinoma (HCC) remains largely unknown. Our study was designed to explore the biological function and clinical implication of lncRNA MIR22HG in HCC.Methods: We evaluated MIR22HG expression in 52-patient, 145-patient, TCGA, and GSE14520 HCC cohorts. The effects of MIR22HG on HCC were analyzed in terms of proliferation, invasion, and metastasis, both in vitro and in vivo. The mechanism of MIR22HG action was explored through bioinformatics, luciferase reporter, and RNA immunoprecipitation analyses.Results: MIR22HG expression was significantly down-regulated in 4 independent HCC cohorts compared to that in controls. Its low expression was associated with tumor progression and poor prognosis of patients with HCC. Forced expression of MIR22HG in HCC cells significantly suppressed proliferation, invasion, and metastasis in vitro and in vivo. Mechanistically, MIR22HG derived miR-22-3p to target high mobility group box 1 (HMGB1), thereby inactivating HMGB1 downstream pathways. Additionally, MIR22HG directly interacted with HuR and regulated its subcellular localization. MIR22HG competitively bound to human antigen R (HuR), resulting in weakened expression of HuR-stabilized oncogenes, such as β-catenin. Furthermore, miR-22-3p suppression, HuR or HMGB1 overexpression rescued the inhibitory effects caused by MIR22HG overexpression.Conclusion: Our findings revealed that MIR22HG plays a key role in tumor progression by suppressing the proliferation, invasion, and metastasis of tumor cells, suggesting its potential role as a tumor suppressor and prognostic biomarker in HCC.
Cancer cells have metabolic features that allow them to preferentially metabolize glucose through aerobic glycolysis, providing them with a progression advantage. However, microRNA (miRNA) regulation of aerobic glycolysis in cancer cells has not been extensively investigated. We addressed this in the present study by examining the regulation of miR-139-5p on aerobic glycolysis of hepatocellular carcinoma (HCC) using clinical specimens, HCC cells, and a mouse xenograft model. We found that overexpressing miR-139-5p restrained aerobic glycolysis, suppressing proliferation, migration, and invasion in HCC cells. miR-139-5p regulated hexokinase 1 (HK1) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression by directly targeting the transcription factor ETS1, which bound to the promoters of the HK1 and PFKFB3 genes. miR-139-5p-induced aerobic glycolysis, proliferation, migration, and invasion were reversed by ETS1 overexpression, while ETS1 silencing induced the expression of miR-139-5p via a post-transcriptional regulation mode involving Drosha. miR-139-5p expression was reduced in HCC compared to para-carcinoma tissue, which was confirmed in The Cancer Genome Atlas and GSE54751 HCC cohorts. Notably, the lower expression of mir-139 was correlated with worse prognosis. These outcomes indicate that reciprocal regulatory interactions between miR-139-5p and ETS1 modulate aerobic glycolysis, proliferation, and metastasis in HCC cells, suggesting new targets for HCC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.