Although checkpoint inhibitors that block CTLA-4 and PD-1 have improved cancer immunotherapies, targeting additional checkpoint receptors may be required to broaden patient response to immunotherapy. PVRIG is a coinhibitory receptor of the DNAM/TIGIT/CD96 nectin family that binds to PVRL2. We report that antagonism of PVRIG and TIGIT, but not CD96, increased CD8 þ T-cell cytokine production and cytotoxic activity. The inhibitory effect of PVRL2 was mediated by PVRIG and not TIGIT, demonstrating that the PVRIG-PVRL2 pathway is a nonredundant signaling node. A combination of PVRIG blockade with TIGIT or PD-1 blockade further increased T-cell activation. In human tumors, PVRIG expression on T cells was increased relative to normal tissue and trended with TIGIT and PD-1 expression. Tumor cells coexpressing PVR and PVRL2 were observed in multiple tumor types, with highest coexpression in endometrial cancers. Tumor cells expressing either PVR or PVRL2 were also present in numbers that varied with the cancer type, with ovarian cancers having the highest percentage of PVR À PVRL2 þ tumor cells and colorectal cancers having the highest percentage of PVR þ PVRL2 À cells. To demonstrate a role of PVRIG and TIGIT on tumor-derived T cells, we examined the effect of PVRIG and TIGIT blockade on human tumor-infiltrating lymphocytes. For some donors, blockade of PVRIG increased T-cell function, an effect enhanced by combination with TIGIT or PD-1 blockade. In summary, we demonstrate that PVRIG and PVRL2 are expressed in human cancers and the PVRIG-PVRL2 and TIGIT-PVR pathways are nonredundant inhibitory signaling pathways. See related article on p. 244
All the lesions appeared slightly hyperintense to skeletal muscle on T1-weighted images, and hyperintense on T2-weighted images with fat saturation [either frequency saturation or Short TI Inversion Recovery (STIR) sequences]. Two enhanced homogeneously after intravenous gadolinium, whereas the third showed heterogeneous enhancement with a nonenhancing area. Despite the difference in enhancing patterns, the histologic appearances of these lesions were similar. Our study shows that the MRI appearance of nodular fasciitis may not be related to the location of lesion. It is thought that the age of nodular fasciitis may reflect its gross morphology, and it is possible that the MRI and histologic appearances could correlate with the age of the lesion, but it would require a larger series to evaluate this concept.
Administration of recombinant G-CSF to infants with neutropenia and clinical signs of early-onset sepsis did not increase circulating ANC, or bone marrow NSP and NPP compared with placebo. No differences were observed between G-CSF and placebo recipients in severity of illness, morbidity, or mortality. No adverse effects of G-CSF administrations were noted.
Beginning with the peptide sequence Cbz-Ile-Glu(OtBu)-Ala-Leu found in PSI (3), a series of vinyl sulfones (VS) were synthesized for evaluation as inhibitors of the chymotrypsin-like activity of the 20S proteasome. Variations at the key P3 position confirmed the importance of a long side chain capped with a hydrophobic group for optimal potency, consistent with a model of binding to the S3 subsite. The tert-butyl glutamic ester initially used at P3 gave plasma unstable, insoluble compounds and was replaced with the better isostere, N-beta-neopentyl asparagine. The inhibitors were shortened by replacing the N-terminal Cbz-isoleucine with a p-tosyl group without loss of potency. Small l-amino acids were used at P2, where d-substitution was not tolerated. The resulting optimized P4-P3-P2 sequence was grafted onto a novel proteasome inhibitor warhead, 2-keto-1,3,4-oxadiazoles (KOD), to produce reversible, subnanomolar proteasome inhibitors that were 1000-fold selective versus cathepsin B (CatB), cathepsin S (CatS), and trypsin-like as well as PGPH-like proteasome activity. A number of compounds in both the VS and the KOD series exhibited growth inhibitory effects against the human prostate cancer cell line PC3 at submicromolar concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.