Several preclinical studies have reported the rapid antidepressant effects of N-methyl-D-aspartate receptor (NMDAR) antagonists, although the underlying mechanisms are still unclear. Death-associated protein kinase 1 (DAPK1) couples GluN2B subunits at extrasynaptic sites to regulate NMDAR channel conductance. In the present study, we found that chronic unpredictable stress (CUS) induced extracellular glutamate accumulation, accompanied by an increase in the DAPK1–NMDAR interaction, the high expression of DAPK1 and phosphorylated GluN2B at Ser1303, a decrease in phosphorylated DAPK1 at Ser308 and synaptic protein deficits in the rat medial prefrontal cortex (mPFC). CUS also enhanced GluN2B-mediated NMDA currents and extrasynaptic responses that were induced by bursts of high-frequency stimulation, which may be associated with the loss of astrocytes and low expression of glutamate transporter-1 (GLT-1). The blockade of GLT-1 in the mPFC was sufficient to induce depressive-like behavior and cause similar molecular changes. Selective GluN2B antagonist, DAPK1 knockdown by adeno-associated virus-mediated short-hairpin RNA or a pharmacological inhibitor, and the uncoupling of DAPK1 from the NMDAR GluN2B subunit produced rapid antidepressant-like effects and reversed CUS-induced alterations in the mPFC. The inhibition of DAPK1 and its interaction with GluN2B subunit in the mPFC also rescued CUS-induced depressive-like behavior 7 days after treatment. A selective GluN2B antagonist did not have rewarding effects in the conditioned place preference paradigm. Altogether, our findings suggest that the DAPK1 interaction with the NMDAR GluN2B subunit acts as a critical component in the pathophysiology of depression and is a potential target for new antidepressant treatments.
Neuronal atrophy and alterations of synaptic structure and function in the medial prefrontal cortex (mPFC) have been implicated in the pathogenesis of depression, but the underlying molecular mechanisms are largely unknown. The protein kinase Mζ (PKMζ), a brain-specific atypical protein kinase C isoform, is important for maintaining long-term potentiation and storing memory. In the present study, we explored the role of PKMζ in mPFC in two rat models of depression, chronic unpredictable stress (CUS) and learned helplessness. The involvement of PKMζ in the antidepressant effects of conventional antidepressants and ketamine were also investigated. We found that chronic stress decreased the expression of PKMζ in the mPFC and hippocampus but not in the orbitofrontal cortex. Overexpression of PKMζ in mPFC prevented the depressive-like and anxiety-like behaviors induced by CUS, and reversed helplessness behaviors. Inhibition of PKMζ in mPFC by expressing a PKMζ dominant-negative mutant induced depressive-like behaviors after subthreshold unpredictable stress and increased learned helplessness behavior. Furthermore, stress-induced deficits in synaptic proteins and decreases in dendritic density and the frequency of miniature excitatory postsynaptic currents in the mPFC were prevented by PKMζ overexpression and potentiated by PKMζ inhibition in subthreshold stress rats. The antidepressants fluoxetine, desipramine and ketamine increased PKMζ expression in mPFC and PKMζ mediated the antidepressant effects of ketamine. These findings identify PKMζ in mPFC as a critical mediator of depressive-like behavior and antidepressant response, providing a potential therapeutic target in developing novel antidepressants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.