We present a genome-wide association study of ileal Crohn's disease (CD) and two independent replication studies that identify five novel regions of association to CD. Specifically, in addition to the previously established CARD15 and IL23R associations, we report strong associations with independent replication to variation in the genomic regions encoding the PHOX2B, NCF4 and ATG16L1 genes, as well as a predicted gene on 16q24.1 (FAM92B) and an intergenic region on 10q21.1. We further demonstrate that the ATG16L1 gene is expressed in intestinal epithelial cell lines and that functional knock down of this gene abrogates autophagy of Salmonella typhimurium. Together these findings suggest that autophagy and host cell responses to intra-cellular microbes are involved in the pathogenesis of CD.Crohn's disease (CD) and ulcerative colitis (UC) represent the two common forms of idiopathic inflammatory bowel disease (IBD), each with a prevalence of roughly 100-150 per 100,000 individuals of European ancestry 1 . CD most commonly involves the ileum and colon but can affect any region of the gut. UC always involves the rectum, and inflammation may extend as far as the cecum in a contiguous pattern 2 . Strong familial aggregation, twin studies and established genetic associations attest to the important role of genetics in IBD pathogenesis [3][4][5] . There is also very strong evidence that the enteric microflora plays a central role in the initiation and maintenance of disease. Therefore, like most complex trait diseases, IBD results from a combination of genetic and non-genetic risk factors, where each individual factor may be expected to have a relatively modest effect on diseaserisk.While a combination of genome-wide linkage, candidate gene and targeted association mapping studies have been successful in the identification of CD-associated genetic variants in CARD15 and the IBD5 haplotype, these explain only a small fraction of the heritability of CD [6][7][8] . We therefore embarked upon a genome-wide association (GWA) study of CD in order to find additional genetic risk factors. Phenotypes for both CD and UC vary considerably among individuals, primarily with regard to sites of inflammation, disease behavior, severity and extraintestinal manifestations. Furthermore, CD site and behavior are likely under genetic control based on clustering within affected sibling pairs 9 , as well as specific observations that CARD15 mutations are a greater risk factor for ileal CD and stricturing behavior 10 . Therefore we have exclusively focused on patients with CD involving the ileal region of the small intestine (with or without other sites of involvement) in an attempt to minimize clinical and genetic heterogeneity. Based on an interim analysis approximately halfway through this study, we identified, confirmed and published the discovery of genetic variants in the IL23R gene that significantly influence risk to developing CD and UC 11 . Specifically at that point, 567 nonJewish ileal CD cases had been scanned and analyz...
Background and Aim The ability to identify children with Crohn’s disease who are at highest risk for rapid progression from uncomplicated to complicated phenotypes would be invaluable in guiding initial therapy. Aim: To determine whether immune responses and/or CARD15 variants are associated with complicated disease phenotypes and predict disease progression. Methods Sera were collected from 796 pediatric CD cases and tested for anti-Cbir1 (flagellin), anti-outer membrane protein C (anti-OmpC), anti-Saccharomyces-cerevisiae (ASCA) and perinuclear anti-neutrophil cytoplasmic antibody (pANCA) using ELISA. Genotyping (TaqmanMGB) was performed for 3 CARD15 variants (SNPs 8, 12, 13). Associations between immune responses (antibody sum (AS) and quartile sum score (QSS), CARD15, and clinical phenotype were evaluated. Results 32% of patients developed at least one disease complication within a median of 32 months and 18% underwent surgery. The frequency of internal penetrating (IP), stricturing (S) and surgery significantly increased (p trend < 0.0001 for all 3 outcomes) with increasing AS and QSS. 9% of seropositive groups had IP/S vs. 2.9% in the seronegative group (p=0.01). 12% of seropositive groups underwent surgery vs. 2% in the seronegative group (p=0.0001). The highest AS group (3) and QSS group (4) demonstrated the most rapid disease progression (p < 0.0001). Increased hazard ratio was observed for AS group 3 (7.8 [2.2–28.7] p < 0.002 and QSS group 4 (11.0 [1.5,83.0] p < 0.02). Conclusions The rate of complicated CD increases in children as the number and magnitude of immune reactivity increases. Disease progression is significantly faster in children expressing immune reactivity.
Therapeutic outcome for the treatment of glioma was often limited due to low permeability of delivery systems across the blood-brain barrier (BBB) and poor penetration into the tumor tissue. In order to overcome these hurdles, we developed the dual-targeting doxorubicin liposomes conjugated with cell-penetrating peptide (TAT) and transferrin (T7) (DOX-T7-TAT-LIP) for transporting drugs across the BBB, then targeting brain glioma, and penetrating into the tumor. The dual-targeting effects were evaluated by both in vitro and in vivo experiments. In vitro cellular uptake and three-dimensional tumor spheroid penetration studies demonstrated that the system could not only target endothelial and tumor monolayer cells but also penetrate tumor to reach the core of the tumor spheroids and inhibit the growth of the tumor spheroids. In vivo imaging further demonstrated that T7-TAT-LIP provided the highest tumor distribution. The median survival time of tumor-bearing mice after administering DOX-T7-TAT-LIP was significantly longer than those of the single-ligand doxorubicin liposomes and free doxorubicin. In conclusion, the dual-ligand liposomes comodified with T7 and TAT possessed strong capability of synergistic targeted delivery of payload into tumor cells both in vitro and in vivo, and they were able to improve the therapeutic efficacy of brain glioma in animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.