Lignin represents the most abundant source of renewable aromatic resources, and the depolymerization of lignin has been identified as a prominent challenge to produce lowmolecular-mass aromatic chemicals. Herein, we report a nanostructured MoO x /CNT, which can serve as an efficient catalyst in hydrogenolysis of enzymatic mild acidolysis lignins (EMALs) derived from various lignocellulosic biomass, thus giving monomeric phenols in high yields (up to 47 wt %). This catalyst showed high selectivity toward phenolic compounds having an unsaturated substituent, because the cleavage of C−O bonds in β-O-4 units is prior to reduction of double bonds by MoO x /CNT under a H 2 atmosphere, which was confirmed by examination of lignin model compound reactions. The effects of some key parameters such as the influence of solvent, temperature, reaction time, and catalyst recyclability were also examined in view of monomer yields and average molecular weight. This method constitutes an economically responsible pathway for lignin valorization, which is comparable to the performance of precious-metal catalytic systems in terms of activity, reusability, and biomass feedstock compatibility.
C-lignin is a homo-biopolymer, being made up of caffeyl alcohol exclusively. There is significant interest in developing efficient and selective catalyst for depolymerization of C-lignin, as it represents an ideal feedstock for producing catechol derivatives. Here we report an atomically dispersed Ru catalyst, which can serve as an efficient catalyst for the hydrogenolysis of C-lignin via the cleavage of C−O bonds in benzodioxane linkages, giving catechols in high yields with TONs up to 345. A unique selectivity to propenylcatechol (77%) is obtained, which is otherwise hard to achieve, because this catalyst is capable of hydrogenolysis rather than hydrogenation. This catalyst also demonstrates good reusability in C-lignin depolymerization. Detailed investigations by model compounds concluded that the pathways involving dehydration and/or dehydrogenation reactions are incompatible routes; we deduced that caffeyl alcohol generated via concurrent C−O bonds cleavage of benzodioxane unit may act as an intermediate in the C-lignin hydrogenolysis. Current demonstration validates that atomically dispersed metals can not only catalyze small molecules reactions, but also drive the transformation of abundant and renewable biopolymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.