Folate‐conjugated gold nanorods targeted to tumor cell surfaces produced severe membrane damage upon near‐infrared irradiation. Photoinduced injury to the plasma membrane resulted in a rapid increase in intracellular calcium (shown in green) with subsequent disruption of the actin network, featured prominently by the formation of membrane blebs.
SummaryPlasmon-resonant gold nanorods, which have large absorption cross sections at near-infrared (NIR) frequencies, are excellent candidates as multifunctional agents for image-guided therapies based on localized hyperthermia. The controlled modification of the nanorods' surface chemistry is of critical importance, as issues of cell-specific targeting and nonspecific uptake must be addressed prior to clinical evaluation. Nanorods coated with CTAB (a cationic surfactant used in nanorod synthesis) are internalized within hours into KB cells by a nonspecific uptake pathway, whereas the careful removal of CTAB from nanorods functionalized with folate results in their accumulation on the cell surface over the same time interval. In either case, the nanorods render the tumor cells highly susceptible to photothermal damage when irradiated at the nanorods' longitudinal plasmon resonance, generating extensive blebbing of the cell membrane at laser fluences as low as 44 W/cm 2 .
Gold nanorods (NRs) have plasmon-resonant absorption and scattering in the near-infrared (NIR) region, making them attractive probes for in vitro and in vivo imaging. In the cellular environment, NRs can provide scattering contrast for darkfield microscopy, or emit a strong two-photon luminescence due to plasmon-enhanced two-photon absorption. NRs have also been employed in biomedical imaging modalities such as optical coherence tomography or photoacoustic tomography. Careful control over surface chemistry enhances the capacity of NRs as biological imaging agents by enabling cell-specific targeting, and by increasing their dispersion stability and circulation lifetimes. NRs can also efficiently convert optical energy into heat, and inflict localized damage to tumor cells. Laser-induced heating of NRs can disrupt cell membrane integrity and homeostasis, resulting in Ca 2+ influx and the depolymerization of the intracellular actin network. The combination of plasmonresonant optical properties, intense local photothermal effects and robust surface chemistry render gold NRs as promising theragnostic agents.
We reexamined the cellular drug delivery mechanism by poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) to determine their utility and limitations as an intracellular drug delivery system. First, we prepared PLGA NPs which physically encapsulated Nile red (a hydrophobic fluorescent dye), in accordance with the usual procedure for labeling PLGA NPs, incubated them with mesothelial cells, and observed an increase in the intracellular fluorescence. We then prepared NPs from PLGA chemically conjugated to a fluorescent dye and observed their uptake by the mesothelial cells using confocal microscopy. We also used Coherent Anti-Stokes Raman Scattering (CARS) microscopy to image cellular uptake of unlabeled PLGA NPs. Results of this study coherently suggest that PLGA NPs (i) are not readily taken up by cells, but (ii) deliver the payload to cells by extracellular drug release and/or direct drug transfer to contacting cells, which are contrasted with the prevalent view. From this alternative standpoint, we analyzed cytotoxicities of doxorubicin and paclitaxel delivered by PLGA NPs and compared with those of free drugs. Finally, we revisit previous findings in the literature and discuss potential strategies to achieve efficient drug delivery to the target tissues using PLGA NPs.
Nondestructive preparation of bicontinuous nanoporous metal membranes by replication of bicontinuous nanoporous polymeric membranes consisting of recoverable asymmetric block copolymers (BCPs) is reported. The BCP membranes are generated by swelling the minority domains of the BCP with selective solvents accompanied by reconstruction of the glassy matrix formed by the majority component (see figure).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.