Articles you may be interested inCurrent-sensitive electroresistance and the response to a magnetic field in La 0.8 Ca 0.2 MnO 3 epitaxial thin films J. Appl. Phys. 97, 10H706 (2005); 10.1063/1.1847092 Effects of film thickness and lattice mismatch on strain states and magnetic properties of La 0.8 Ca 0.2 MnO 3 thin filmsThe evolution of three-dimensional strain states and crystallographic domain structures of epitaxial colossal magnetoresistive La 0.8 Ca 0.2 MnO 3 films have been studied as a function of film thickness and lattice mismatch with two types of ͑001͒ substrates, SrTiO 3 and LaAlO 3 . In-plane and out-of-plane lattice parameters and strain states of the films were measured directly using normal and grazing incidence x-ray diffraction techniques. The unit cell volume of the films is not conserved, and it exhibits a substrate-dependent variation with film thickness. Films grown on SrTiO 3 substrates with thickness up to ϳ250 Å are strained coherently with a pure (001) T orientation normal to the surface. In contrast, films as thin as 100 Å grown on LaAlO 3 show partial relaxation with a (110) T texture. While thinner films have smoother surfaces and higher crystalline quality, strain relaxation in thicker films leads to mixed (001) T and (110) T textures, mosaic spread, and surface roughening. The magnetic and electrical transport properties, particularly Curie and peak resistivity temperatures, also show systematic variations with respect to film thickness.
Magnetic anisotropy of La0.8Ca0.2MnO3 (LCMO) epitaxial thin films grown on (001) SrTiO3 and LaAlO3 a substrates exhibits strong correlation with substrate-induced strain states as determined by normal and grazing incidence x-ray diffraction. In a 250 Å thick LCMO (001)T film grown on SrTiO3 substrate, an in-plane biaxial magnetic anisotropy is observed, and it is accompanied by a substrate-induced in-plane biaxial tensile strain. In contrast, the observed magnetic easy axis for a 250 Å (110)T film grown on LaAlO3 substrate is perpendicular to the film plane, and the corresponding in-plane strain is biaxial compressive. In both cases the magnetic easy axes are along the crystallographic directions under tensile strain, indicating the presence of a positive magnetostriction. In thicker films (∼4000 Å) grown on both substrates that are nearly strain relaxed, the magnetic easy axis lies in the film plane along the [110] direction of the (001) substrate.
Single domain epitaxial (110) films of SrRuO3 exhibit uniaxial magnetic anisotropy instead of the biaxial anisotropy observed in the bulk material. The magnetic easy axis for the film is along the orthorhombic [010] direction below TC, and it rotates toward the [110] perpendicular direction as temperature decreases. The [100] direction, which is also magnetically “easy” in the bulk, becomes “hard” in the film. X-ray diffraction experiments show that this unique transformation of magnetic anisotropy is related to a distortion from the bulk orthorhombic lattice into a triclinic structure in the epitaxial film, such that the lattice along the [010] direction expands while its [100] counterpart contracts. The distortion appears to arise from rotation and tilt of RuO6 octahedra. The finding indicates that the magnetic anisotropy in epitaxial SrRuO3 films is rooted in the crystalline anisotropy influenced by strong spin–orbit interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.