By lifting an epitaxial thin film off its growth substrate, we directly and quantitatively demonstrate how elastic strain can alter the magnetic and electrical properties of single-domain epitaxial SrRuO3 thin films (1000 Å thick) on vicinal (001) SrTiO3 substrates. Free-standing films were then obtained by selective chemical etching of the SrTiO3. X-ray diffraction analysis shows that the free-standing films are strain free, whereas the original as-grown films on SrTiO3 substrates are strained due to the lattice mismatch at the growth interface. Relaxation of the lattice strain resulted in a 10 K increase in the Curie temperature to 160 K, and a 20% increase in the saturation magnetic moment to 1.45 μB/Ru atom. Both values for the free-standing films are the same as that of the bulk single crystals. Our results provide direct evidence of the crucial role of the strain effect in determining the properties of the technologically important perovskite epitaxial thin films.
We report the effect of both miscut angle (α) and miscut direction (β) of vicinal substrates on the epitaxial growth and domain structure of isotropic metallic oxide SrRuO3 thin films. The thin films have been grown on vicinal (001) SrTiO3 substrates with α up to 4.1° and β up to 37° away from the in-plane [010] axis. Single-crystal epitaxial (110)o SrRuO3 thin films were obtained on vicinal SrTiO3 substrates with a large miscut angle (α=1.9°, 2.1°, and 4.1°) and miscut direction close to the [010] axis. Decreasing the substrate miscut angle or aligning the miscut direction close to the [110] axis (β=45°) resulted in an increase of 90° domains in the plane. The films grown on vicinal substrates displayed a significant improvement in crystalline quality and in-plane epitaxial alignment as compared to the films grown on exact (001) SrTiO3 substrates. Atomic force microscopy revealed that the growth mechanism changed from two-dimensional nucleation to step flow growth as the miscut angle increased.
Single domain epitaxial (110) films of SrRuO3 exhibit uniaxial magnetic anisotropy instead of the biaxial anisotropy observed in the bulk material. The magnetic easy axis for the film is along the orthorhombic [010] direction below TC, and it rotates toward the [110] perpendicular direction as temperature decreases. The [100] direction, which is also magnetically “easy” in the bulk, becomes “hard” in the film. X-ray diffraction experiments show that this unique transformation of magnetic anisotropy is related to a distortion from the bulk orthorhombic lattice into a triclinic structure in the epitaxial film, such that the lattice along the [010] direction expands while its [100] counterpart contracts. The distortion appears to arise from rotation and tilt of RuO6 octahedra. The finding indicates that the magnetic anisotropy in epitaxial SrRuO3 films is rooted in the crystalline anisotropy influenced by strong spin–orbit interactions.
Domain structure of epitaxial PbTiO 3 thin films on Pt(001)/MgO(001) substrates J. Appl. Phys. 95, 236 (2004); 10.1063/1.1631731 Effects of stress relaxation of epitaxial SrRuO 3 thin film on microstructures
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.