Mode-locked fiber lasers have many important applications in science and engineering. In this work, we demonstrate for the first time a 110 GHz high repetition rate mode-locked fiber laser using a silicon-based micro-ring resonator (SMRR) to act as an intra-cavity optical comb filter, as well as an optical nonlinear element. No electrical bias for the SMRR is required to reduce free carrier absorption. The SMRR has a free spectral range of 0.88 nm, enforcing laser mode-locking at the 110 GHz high rate. The optical nonlinearity of the SMRR also supports the dissipative four-wave mixing effect for generating the mode-locked optical pulse trains. The mode-locked pulse-width, optical 3 dB spectral bandwidth and the time-bandwidth product (TBP) are experimentally measured under different pump currents to the erbium-doped fiber-amplifier module inside the laser cavity. The relative intensity noise and the line-width of the proposed laser are also evaluated. Furthermore, a long-term monitoring is performed. The experimental results show that the optical pulse train generated by the SMRR-based mode-locked fiber laser has a 2.6 ps pulse-width (pump current at 400 mA) at a 110 GHz high repetition rate, narrow line-width (1 kHz), high stability (under observation of an hour), and nearly Gaussian transform-limited (TBP is 0.455).
Based on the acoustic radiation of point source, a phase-coded approach is proposed as a general technology to generate controllable acoustical vortices. For N sources, acoustical vortices can be generated with the phase difference of 2πm/N for the source topological charge m. It is proved that more circular pressure distributions of acoustical vortices with higher pressure peak amplitude can be generated for more sources. The number and spiral direction of phase twists are demonstrated to be determined by m and the maximum topological charge of acoustical vortices is |L|=Fix[(N−1)/2], where Fix(x) rounds the element x toward zero. To produce acoustical vortices with a maximum topological charge L, the minimum source number of Nmin=max(2|L|+1,4) should be employed with the phase difference of 2πL/Nmin and the phase difference resolution is also demonstrated to be π. The phase-coded approach has been verified by a 6-source experiment. The measured distributions of pressure and phase as well as the topological charge of acoustical vortices agree well with theoretical results, which suggest the feasibility of the phase-coded approach for controllable generation of acoustical vortices.
We propose and demonstrate a 250-GHz high-repetition-rate mode-locked Erdoped fiber laser, which utilizes a silicon micro-ring resonator (SMRR). The SMRR acts as an optical comb filter to help achieve passive mode-locking through the dissipative fourwave-mixing effect induced by a piece of high nonlinear fiber. A short section of polarizationmaintaining fiber is inserted in the cavity to induce birefringence filtering to significantly enhance the stability of the proposed laser through the combined effects of optical filtering and nonlinear spectral broadening. The laser can operate about 2 and 6 nm in the case of 1.48-ps and 875-fs output pulsewidth, with 3-dB bandwidth, respectively. The laser can remain mode locked, during our measurement time, without any cavity length or temperature feedback control.
In this work, we propose and demonstrate a stable and wavelength-tunable erbium-doped fiber (EDF) ring laser. Here, a silicon-on-insulator (SOI)-based silicon-micro-ring-resonator (SMRR) is used as the wavelength selective element inside the fiber ring cavity. A uniform period grating coupler (GC) is used to couple between the SMRR and single mode fiber (SMF) and serves also as a polarization dependent element in the cavity. The output lasing wavelength of the proposed fiber laser can be tuned at a tuning step of 2 nm (defined by the free spectral range (FSR) of the SMRR) in a bandwidth of 35.2 nm (1532.00 to 1567.20 nm), which is defined by the gain of the EDF. The optical-signal-to-noise-ratio (OSNR) of each lasing wavelength is larger than 42.0 dB. In addition, the output stabilities of power and wavelength are also discussed.
SummaryConservation plans for waterbirds in periodically flooded wetlands should be based on a deep understanding of the relationship between habitat availability and the hydrological regime. Using waterbird surveys and remotely sensed images, we investigated how habitat availability for wintering waterbirds was regulated by seasonal water level fluctuation at Shengjin Lake in the lower Yangtze River floodplain, which is an important wintering area along the East Asian-Australasian Flyway. We recorded 52 waterbird species during three field surveys, and categorised them into four groups based on their foraging preferences: grassland, mudflats, shallow water, or deep water. Habitat availability for the four groups was significantly influenced by fluctuations in water level. Habitat for deep-water feeders dominated the lake throughout the year, despite contracting during the wintering season. Water recession during winter exposed more diverse riparian habitats that showed high spatial heterogeneity at the landscape level, with the Upper Lake providing the most suitable habitats for the most diverse and abundant waterbirds. It is worth noting that the water level was regulated highly for aquaculture during the early wintering period, impeding access to suitable habitats for the early-arriving waterbirds that foraged in the riparian mudflats and grassland. Furthermore, rapid water recession from the opening of a sluice gate allowed the exposed moist mudflats to dry up quickly, reducing its suitability for shorebirds and cranes. For effective wintering waterbird conservation in the ephemeral lacustrine wetlands in the Yangtze River floodplain, we suggest stepwise water recession plans, together with the recovery of the aquatic vegetation community and reduction in high-density aquaculture, to synchronise the exposure of foraging habitats with the migration phenology of different waterbird species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.