Scanning electron micrographs of a solvent-extracted sheared polyethylene (PE) blend revealed, for the first time, an unexpected shish-kebab structure with multiple shish. The blend contained 2 wt % of crystallizing ultrahigh molecular weight polyethylene (UHMWPE) and 98 wt % of noncrystallizing PE matrix. The formation of multiple shish was attributed to the coil-stretch transition occurring in sections of UHMWPE chains. Synchrotron x-ray data provided clear evidence of the hypothesis that multiple shish originate from stretched chain sections and kebabs originate from coiled chain sections, following a diffusion-controlled crystallization process.
Here, we report a new Ti(IV)-based porous metal-organic framework (MOF) (NTU-9), which displayed strong absorption in the visible region with a bandgap of 1.72 eV. The electronic structure and bandgap were further investigated by DFT calculations. Photoelectrochemical studies indicated that NTU-9 is photoactive under visible light illumination (λ > 400 nm) and acts as a p-type semiconductor. The results demonstrated that Ti(IV)-based MOFs could be promising visible-light photocatalysts for energy conversion and environmental remediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.