A cancer immunotherapy μ-environment LabChip, equipped with titanium oxide phthalocyanine (TiOPc)-based optoelectronic tweezers (OET) to achieve direct cell-cell contact, can be used to study the interaction between immune cells and other cells for real-time analysis of NK cells' behavior. In microfluidic devices, it is difficult to solve dead zone problems and observe dynamic cell-cell interactions. We have created a stable and static culture μ-environment which can enhance NK cell activities. In addition, OET is used to solve dead zone problems by manipulating a single cell into four-leaf-clover-shaped (FLCS) microwells made of poly(ethylene glycol) diacrylate (PEG-DA) through optofluidic maskless lithography, causing direct cell-cell contact. Our design reconstructed an in vitro human immune system for the study of dynamic immunological response. When the NK cells came into contact with the target cells in the μ-environment LabChip, we observed that the target cells showed apoptotic characteristics (i.e. cell shrinkage and blebbing within 2 h and then die within 3 h). In addition, our μ-environment LabChip demonstrated higher NK cell activity compared with conventional analysis. We have created an innovative cancer immunotherapy μ-environment LabChip to provide a stable and static μ-environment for cell-cell interaction study. Furthermore, our μ-environment LabChip showed the potential to enhance NK cell activity and to study immunological interactions between immune cells and cancer cells dynamically.
Using three-dimensional (3D) bone engineering to fabricate bone segments is a better choice for repairing bone defects than using autologous bone. However, biomaterials for bone engineering are burdened with some clinical safety concerns. In this study, we layered commonly found clinical materials, hemostatic gelatin sponges, in a novel manner to create a 3D scaffold for bone engineering purposes. We further examined the comparable benefits of our design with both closed- and open-bottom holders. Cells in stacked layer disc systems were examined after a week of growth and differentiation. Osteoblasts in the outer layers of both closed- and open-bottom holder systems displayed gradually increased alkaline phosphatase (ALP) activity but decreased osteopontin (OPN) expression. Further, cell proliferation assays and LIVE/DEAD staining revealed decreased viable cell counts in the top layer with increased incubation time. However, while layered disc systems with closed-bottom holders underwent differentiation, they kept more differentiated cells alive within the gelatin sponge disc scaffold after 28 d of culturing. Whether cells were inoculated into the top, middle, or bottom portions of the layered disc stack, osteoblasts showed a preference for migrating to the top layer, in keeping with the oxygen and nutrients gradients. Regarding practical application, this study offers valuable information to promote the use of hemostatic gelatin sponges for bone engineering.
We applied a thermal-desorption gas-chromatograph mass-spectrometer (TD-GC–MS) system to identify the marker volatile organic compounds (VOCs) in the aroma of red wine. After obtaining the marker VOC, we utilized surface acoustic waves (SAWs) to develop a highly sensitive sensing system as ‘electronic nose’ to detect these marker VOC. The SAW chips were fabricated on a LiNbO3 substrate with a lithographic process. We coated sensing polymers on the sensing area to adsorb the marker VOC in a sample gas. The adsorption of the marker VOC altered the velocity of the SAW according to a mass-loading effect, causing a frequency decrease. This experiment was conducted with wines of three grape varieties—cabernet sauvignon, merlot and black queen. According to the results of TD-GC–MS, the King brand of red wine is likely to have unique VOC, which are 2-pentanone, dimethyl disulfide, 2-methylpropyl acetate and 2-pentanol; Blue Nun-1 probably has a special VOC such as 2,3-butanedione. We hence used a SAW sensor array to detect the aroma of red wines and to distinguish their components by their frequency shift. The results show that the use of polyvinyl butyral (PVB) as a detecting material can distinguish Blue Nun-2 from the others and the use of polyvinyl alcohol (PVA) can distinguish King from the others. We conducted random tests to prove the accuracy and the reliability of our SAW sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.