Background There is currently no research on the diagnostic value of metagenomic next-generation sequencing (mNGS) for a single pathogens in CSF. The aim of this study was to analyse the value of mNGS for identifying Streptococcus pneumoniae ( S. pneumoniae ) in paediatric bacterial meningitis. Methods Bacterial meningitis (BM) cases from October 23, 2014, to December 31, 2016, and December 1, 2017, to July 31, 2018 at Beijing Children’s Hospital were reviewed. Clinical features and pathogens were analysed. Results We diagnosed 135 patients with BM in this study. A total of 43 S. pneumoniae were identified by combination methods. 26/135 (19.3%) patients had positive results in S. pneumoniae by blood and/or cerebrospinal fluid (CSF) culture. Alere BinaxNow® Streptococcus pneumoniae Antigen test was positive in 35/135(25.9%) cases. 32/135 (23.7%) S. pneumoniae were identified by mNGS. Six CSF samples were identified as S. pneumoniae only by mNGS technology. Taking culture as the gold standard, the sensitivity and specificity of mNGS for diagnosing S. pneumoniae meningitis were 73.1 and 88.1%, respectively. The positive predictive value (PPV) and negative predictive value (NPV) of diagnosing S. pneumoniae meningitis by mNGS were 59.4 and 93.2%, respectively. When comparison between mNGS and combined tests (culture and Alere BinaxNow® Streptococcus pneumoniae Antigen test), the sensitivity and specificity of mNGS for S. pneumoniae identification were 70.3 and 93.9%, the PPV and NPV in the identification of S. pneumoniae by mNGS were 81.4 and 89.3%, respectively. The difference in number of unique reads of S. pneumoniae in from CSF sample (< 14 days onset) and CSF sample (> 14 days from onset) was statistically significant (170.5 VS. 13, P = 0.019). The difference in the collected time of CSF for culture and mNGS was statistically significant (4 days VS. 14 days, P < 0.001). Conclusions mNGS has high sensitivity and specificity for S. pneumoniae identification. The pathogen load (number of unique reads) of S. pneumonia is related to the CSF collection time. mNGS was less affected than culture by the use of antibiotics before CSF collection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.