ABSTRACT. Keshan disease (KD) is an endemic cardiomyopathy associated with selenium deficiency. Recent studies indicate that glutathione peroxidase 1 (GPx1) mutation decreases GPx activity in myocardial cells and increases the risk of KD. To further clarify the correlation between GPx1 polymorphism and KD, we analyzed GPx1 polymorphism, blood selenium levels and GPx activity in KD patients and healthy controls in Heilongjiang Province. Four and 24 new mutation loci in the promoter and the exon region, respectively, of the GPx1 gene were found in the subjects, in contrast with the previously reported loci. There were no significant differences in the mutation frequency of these loci between the KD group and controls (chi-square test; P > 0.05). However, the mutation frequency of exon 474 was higher in the KD group (7/36) than in controls (2/41), and GPx activity was lower in the mutation group (90.475 ± 23.757 U/L) than in the non-mutation group (93.947 ± 17.463 U/L). Further investigation is necessary to clarify a possible causality between GPx1 exon 474 mutation and KD.
Electroantennogram responses to a wide range of plant volatile compounds that have been identified in tea plants Camellia sinensis L. (Ericales: Theaceae) were recorded from males and females of the tea slug moth, Iragoides fasciata Moore (Lepidoptera: Limacodidae). The responses to 26 compounds, belonging to several chemical classes, and two mixtures were evaluated. The results showed significantly different electroantennogram responses to the different chemicals, as well as significantly different responses according to gender. The green leaf volatile components elicited significantly greater responses in males. In general, the antennae of males were more sensitive, and responded more strongly, to most of the compounds. Responses to sesquiterpenoids were lower in both males and females. Dose-dependent response studies indicated differences in response between genders and concentrations, suggesting the existence of sexual dimorphism. Compounds belonging to the green leaf volatiles class appeared to be important clues in host-plant selection by this oligophagous species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.