Simple and efficient geometric controllers, like PurePursuit, have been widely used in various types of autonomous vehicles to solve tracking problems. In this paper, we have developed a new pursuit method, named CFPursuit, which has been based on Pure-Pursuit but with certain differences. In CF-Pursuit, in order to reduce fitting errors, we used a clothoid C 1 curve to replace the circle employed in Pure-Pursuit. This improvement to the fitting method helps the Pursuit method to decrease tracking errors. As regards the selection of look-ahead distance, we employed a fuzzy system to directly consider the path's curvature. There are three input variables in this fuzzy system, 6mcurvature, 9mcurvature and 12mcurvature, calculated from the clothoid fit with the current position and the goal position on the defined path. A Sugeno fuzzy model was adapted to output a reasonable look-ahead distance using the experiences of human drivers as well as our own tests. Compared with some other geometric controllers, CF-Pursuit performs better in robustness, cross track errors and stability. The results from field tests have proven the CF-Pursuit is a practical and efficient geometric method for the path tracking problems of autonomous vehicles.
High-definition (HD) maps have gained increasing attention in highly automated driving technology and show great significance for self-driving cars. An HD road network (HDRN) is one of the most important parts of an HD map. To date, there have been few studies focusing on road and road-segment extraction in the automatic generation of an HDRN. To improve the precision of an HDRN further and represent the topological relations between road segments and lanes better, in this paper, we propose an HDRN model (HDRNM) for a self-driving car. The HDRNM divides the HDRN into a road-segment network layer and a road-network layer. It includes road segments, attributes and geometric topological relations between lanes, as well as relations between road segments and lanes. We define the place in a road segment where the attribute changes as a linear event point. The road segment serves as a linear benchmark, and the linear event point from the road segment is mapped to its lanes via their relative positions to segment the lanes. Then, the HDRN is automatically generated from road centerlines collected by a mobile mapping vehicle through a multi-directional constraint principal component analysis method. Finally, an experiment proves the effectiveness of this HDRNM.
Autonomous driving is experiencing rapid development. A lane-level map is essential for autonomous driving, and a lane-level road network is a fundamental part of a lane-level map. A large amount of research has been performed on lane-level road network generation based on various on-board systems. However, there is a lack of analysis and summaries with regards to previous work. This paper presents an overview of lane-level road network generation techniques for the lane-level maps of autonomous vehicles with on-board systems, including the representation and generation of lane-level road networks. First, sensors for lane-level road network data collection are discussed. Then, an overview of the lane-level road geometry extraction methods and mathematical modeling of a lane-level road network is presented. The methodologies, advantages, limitations, and summaries of the two parts are analyzed individually. Next, the classic logic formats of a lane-level road network are discussed. Finally, the survey summarizes the results of the review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.