Activated carbons (AC) were produced by chemical activation with potassium hydroxide (KOH) at 800°C from chars that were carbonized from reedy grass leaves at 450°C in N2atmosphere. The effects of the weight ratio of KOH/char ( impregnation ratio), activation temperature and duration time were examined. Adsorption capacity was demonstrated with iodine number. BET surface area, pore volume and pore size of activated carbons were characterized by N2adsorption isotherms. The maximum surface area and iodine number of the AC was 1100 m2/g and 1080 mg/g produced at 800°C for2h and impregnation ratio is 4:1.The characteristics of activated carbons were determined by Infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Thermal gravimetry (TG/DTA) analysis of raw material was carried out.
The development of materials for core components which can serve in high temperature corrosive environments for a long service time is crucial to realize high efficiency and high-burnup operation of advanced nuclear reactors. Alumina forming austenitic (AFA) alloy is a kind of promising materials with improved corrosion resistance as well as strength at elevated temperature. The progress on the composition design and characterization of AFA alloys are reviewed in this work for evaluation their potential applications in advanced nuclear reactors. AFA alloys without the addition of carbon have been fabricated. Microstructures were observed by SEM and TEM. Mechanical properties were measured at room temperature and high temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.