This study was to explore the application of computed tomography (CT) images based on intelligent segmentation algorithms in the analysis of ovarian tumors, so as to provide a theoretical basis for clinical diagnosis of ovarian tumors. In this study, 100 patients with ovarian tumors were selected as the research objects and performed CT imaging examinations; a convolutional neural networks (CNN) algorithm model was constructed and applied to CT diagnostic image segmentation of patients with ovarian tumors, so as to analyze the effectiveness of the proposed algorithm for CT image segmentation. As a result, the image was segmented three times under the CNN algorithm, and the numbers of true positives (TP) were 50, 49, and 50, respectively; the numbers of false positives (FP) were 1, 2, and 1, respectively; the numbers of false negatives (FN) were 2, 3, and 2, respectively; and the numbers of true negatives (TN) were 47, 46, and 47, respectively. Thus, there was no great difference in the three measured values P ≥ 0.05 . The accuracy of the CNN algorithm was 0.97, 0.95, and 0.97, respectively, for the three times of segmentation; the precision was 0.98, 0.96, and 0.98, respectively; the recall was 0.96, 0.94, and 0.96, respectively. Thus, the accuracy, precision, and recall of the three measurements were not greatly different P ≥ 0.05 . In addition, the F1 values of three measurements were 0.97, 0.94, and 0.97, respectively, which all were close to 1, showing no statistically great difference P ≥ 0.05 . The segmentation accuracy, precision, and recall of the algorithm in this study were greatly greater than the SE-Res Block U-shaped CNN algorithm, and the density peak clustering algorithm, and the differences were statistically significant P < 0.05 . In short, the CNN algorithm showed high accuracy, precision, recall, and comprehensive evaluation values for CT image segmentation, which made the diagnosis of malignant or benign ovarian tumors more effective and provided reliable theoretical guidance for clinical analysis of ovarian tumors.
Aiming at the characteristic of medical images, this paper presents the improved genetic simulated annealing algorithm with K-means clustering analysis and applies in medical CT image segmentation. This improved genetic simulated annealing algorithm can be used to globally optimize k-means image segmentation functions to solve the locality and the sensitiveness of the initial condition. It can automatically adjust the parameters of genetic algorithm according to the fitness values of individuals and the decentralizing degree of individuals of the population and keep the variety of population for rapidly converging, and it can effectively avoid appearing precocity and plunging into local optimum. The example shows that the method is feasible, and better segmentation results have got to satisfy the request for 3D reconstruction, compared with k-means image segmentation and genetic algorithm based image segmentation.
Remote fault diagnosis in order to realize the mining enterprise equipment requirement, reduce the cost of fault diagnosis system based on VPN remote fault diagnosis system scheme is put forward. VPN technology to establish the enterprise network system, it is reasonable to implement remote connections between corporate headquarters to the mines. It can always track the running status of equipment working in the field of improving customer service response speed. Users can use it to avoid safe hidden trouble, as far as possible to shorten downtime, increase productivity. Field operation shows that our designed system can quickly diagnose the cause of the problem in time to provide a good reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.