These results suggest that norcantharidin triggers apoptosis in colorectal cancer cell lines via the activation of the CD95 receptor/ligand system, and that this agent may be useful for developing new therapeutic regimens for the treatment of colorectal carcinoma.
Branched-chain α-keto acid dehydrogenase kinase (BCKDK), the key enzyme of branched-chain amino acids (BCAAs) metabolism, has been reported to promote colorectal cancer (CRC) tumorigenesis by upregulating the MEK-ERK signaling pathway. However, the profile of BCKDK in metastatic colorectal cancer (mCRC) remains unknown. Here, we report a novel role of BCKDK in mCRC. BCKDK is upregulated in CRC tissues. Increased BCKDK expression was associated with metastasis and poor clinical prognosis in CRC patients. Knockdown of BCKDK decreased CRC cell migration and invasion ex vivo, and lung metastasis in vivo. BCKDK promoted the epithelial mesenchymal transition (EMT) program, by decreasing the expression of E-cadherin, epithelial marker, and increasing the expression of N-cadherin and Vimentin, which are mesenchymal markers. Moreover, BCKDK-knockdown experiments in combination with phosphoproteomics analysis revealed the potent role of BCKDK in modulating multiple signal transduction pathways, including EMT and metastasis. Src phosphorylated BCKDK at the tyrosine 246 (Y246) site in vitro and ex vivo. Knockdown and knockout of Src downregulated the phosphorylation of BCKDK. Importantly, phosphorylation of BCKDK by Src enhanced the activity and stability of BCKDK, thereby promoting the migration, invasion, and EMT of CRC cells. In summary, the identification of BCKDK as a novel prometastatic factor in human CRC will be beneficial for further diagnostic biomarker studies and suggests novel targeting opportunities.
The main component of natural teeth was determined many years ago as calcium phosphate, mostly in the form of hydroxyapatite with different crystallites. In the past, the method used in tooth crystal investigation has been mainly powder X-ray diffraction analysis, but this method has its drawbacks, i.e. the destruction of the natural tooth structure and the difficulty in examining the preferred orientation in different layers of the tooth. During the last century, microzone X-ray diffraction on the tooth surface was carried out, but, as the technology was less sophisticated, the results obtained were not very detailed. The newly developed microdiffraction equipment permits analysis of the microzone of teeth in situ. To test this new microdiffraction equipment, microdiffraction analysis of one natural healthy deciduous molar tooth and one carious deciduous molar tooth has been performed, using a Bruker D8 instrument. Phase analysis of the two teeth was performed; the crystal size at six test points in the natural healthy tooth was calculated by reflection (211), and the crystal preferred orientation of reflection (300) and reflection (002) at six test points in the natural healthy tooth were compared. The results showed that the tooth was a kind of biological mixed crystal composed of several crystal phases, the main crystal phase being hydroxyapatite. The crystal size grew larger going from the dentin to the enamel. The crystal preferred orientation mainly existed in the enamel, especially in the reflection (002). From our experiment, layer orientation and continuous crystal variations in teeth could be conveniently studied using fast online measurements by high-resolution X-ray microdiffraction equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.