Most important part of Support Vector Machines(SVM) are the kernels. Although there are several widely used kernel functions, a carefully designed kernel will help improve the accuracy of SVM. The proposed work aims to develop a new kernel function for a multi-class support vector machine, perform experiments on various data sets, and compare them with other classification methods. Directly it is not possible multiclass classification with SVM. In this proposed work first designed a model for binary class then extended with the one-verses-all approach. Experimental results have proved the efficiency of the new kernel function. The proposed kernel reduces misclassification and time. Other classification methods observed better results for some data sets collected from the UCI repository.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.