Palmitic acid (PA), the main component of dietary saturated fat, has been known to increase in patients with obesity, and PA-induced lipotoxicity may contribute to obesity-related male infertility. Melatonin has beneficial effects on reproductive processes; however, the effect and the underlying molecular mechanism of melatonin's involvement in PA-induced cytotoxicity in the testes are poorly understood. Our findings showed that lipotoxicity was observed in mouse testes after long-term PA treatment and that melatonin therapy restored spermatogenesis and fertility in these males. Moreover, melatonin therapy suppressed PA-induced apoptosis by modulating apoptosis-associated proteins such as Bcl2, Bax, C-Caspase3, C-Caspase12, and CHOP in type B spermatogonial stem cells. Changes in the expression of endoplasmic reticulum (ER) stress markers (p-IRE1, p-PERK, ATF4) and intracellular Ca 2+ levels showed that melatonin relieved PA-induced ER stress. Mechanistically, melatonin stimulated the expression and nuclear translocation of SIRT1 through its receptors and prevented PA-induced ROS production and mitochondrial dysfunction via SIRT1 signaling pathway. Furthermore, melatonin promoted SIRT1-mediated p53 deacetylation, thereby relieving G2/M arrest in response to PA-stimulated DNA damage. Collectively, these findings indicate that melatonin protects the testes from PA-induced lipotoxicity through the activation of SIRT1, which alleviates oxidative stress, ER stress, mitochondrial dysfunction, and DNA damage.
Broodiness in laying hens results in atrophy of the ovary and consequently decreases productivity. However, the regulatory mechanisms that drive ovary development remain elusive. Thus, we collected atrophic ovaries (AO) from 380-day-old broody chickens (BC) and normal ovaries (NO) from even-aged egg-laying hens (EH) for RNA sequencing. We identified 3,480 protein-coding transcripts that were differentially expressed (DE), including 1,719 that were down-regulated and 1,761 that were up-regulated in AO. There were 959 lncRNA transcripts that were DE, including 56 that were down-regulated and 903 that were up-regulated. Among the116 miRNAs that were DE, 79 were down-regulated and 37 were up-regulated in AO. Numerous DE protein-coding transcripts and target genes for miRNAs/lncRNAs were significantly enriched in reproductive processes, cell proliferation, and apoptosis pathways. A miRNA-intersection gene-pathway network was constructed by considering target relationships and correlation of the expression levels between ovary development-related genes and miRNAs. We also constructed a competing endogenous RNA (ceRNA) network by integrating competing relationships between protein-coding genes and lncRNA transcripts, and identified several lncRNA transcripts predicted to regulate the CASP6, CYP1B1, GADD45, MMP2, and SMAS2 genes. In conclusion, we discovered protein-coding genes, miRNAs, and lncRNA transcripts that are candidate regulators of ovary development in broody chickens.
Various reports have suggested that secreted frizzled-related protein (SFRP) 5 (SFRP5) plays a regulatory role in the processes of cellular proliferation and differentiation, by means of inactivating the Wnt/β-catenin signaling pathway. Recently, SFRP5 has been identified as an anti-inflammatory adipokine, which may be induced during preadipocyte proliferation, differentiation, and maturation. This review aims to identify the recent progress in the research and development of SFRP5 that can play a role in influencing lipid metabolism, inflammation, and type 2 diabetes mellitus (T2DM). Recent evidence has indicated that SFRP5 is capable of stimulating adipocyte differentiation via inhibition of the Wnt/β-catenin signaling pathway. In addition, SFRP5 binding with wingless-type murine mammary tumor virus integration site family, member 5A (Wnt5a), inhibits the activation of c-Jun N-terminal kinase (JNK) downstream of the Wnt signaling pathway. An antagonistic relationship has been found between the reductions in inflammatory cytokine production and serine phosphorylation of insulin receptor substrate-1 (IRS-1) in regard to inhibition of insulin signaling network. By this mechanism, SFRP5 exerts its influence on metabolic function. Based on our review of the current available literature, we support the notion that SFRP5 can be used as a therapeutic target in the treatment of T2DM.
Chicken atrophic ovaries have decreased volume and are indicative of ovarian failure, presence of a tumor, or interrupted ovarian blood supply. Ovarian tumor is accompanied by an increase in follicular atresia, granulosa cell (GC) apoptosis, and autophagy. In a previous study, we found using high throughput sequencing that miR-204 is highly expressed in chicken atrophic ovaries. Thus, in the present study, we further investigated its function in GC apoptosis and autophagy. We found that overexpression of miR-204 reduced mRNA and protein levels of proliferation-related genes and increased apoptosis-related genes. Cell counting kit-8 (CCK-8), 5-ethynyl-2-deoxyuridine (EdU), and flow cytometry assays revealed that miR-204 inhibited GC proliferation and promoted apoptosis. Furthermore, we confirmed with reporter gene assays that Forkhead box K2 (FOXK2) was directly targeted by miR-204. FOXK2, as a downstream regulator of phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signal pathways, promoted GC proliferation and inhibited apoptosis. Subsequently, we observed that miR-204 was involved in GC autophagy by targeting Transient Receptor Potential Melastatin 3 (TRPM3). The luciferase activities of the two binding sites of TRPM3 were decreased in response to treatment with a miR-204 mimic, and the autophagic flux was increased after miR-204 inhibition. However, overexpression of miR-204 had opposite results in autophagosomes and autolysosomes. miR-204 inhibits GC autophagy by suppressing the protein expression of TRPM3/AMP-activated protein kinase (AMPK)/ULK signaling pathway components. Inhibition of miR-204 enhanced autophagy by accumulating and degrading the protein levels of LC3-II (Microtubule Associated Protein Light Chain 3B) and p62 (Protein of 62 kDa), respectively, whereas miR-204 overexpression was associated with contrary results. Immunofluorescence staining showed that there was a significant reduction in the fluorescent intensity of LC3B, whereas p62 protein was increased after TRPM3 silencing. Collectively, our results indicate that miR-204 is highly expressed in chicken atrophic ovaries, which promotes GC apoptosis via repressing FOXK2 through the PI3K/AKT/mTOR pathway and inhibits autophagy by impeding the TRPM3/AMPK/ULK pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.