With the rapid growth of the Internet, the curse of dimensionality caused by massive multi-label data has attracted extensive attention. Feature selection plays an indispensable role in dimensionality reduction processing. Many researchers have focused on this subject based on information theory. Here, to evaluate feature relevance, a novel feature relevance term (FR) that employs three incremental information terms to comprehensively consider three key aspects (candidate features, selected features, and label correlations) is designed. A thorough examination of the three key aspects of FR outlined above is more favorable to capturing the optimal features. Moreover, we employ label-related feature redundancy as the label-related feature redundancy term (LR) to reduce unnecessary redundancy. Therefore, a designed multi-label feature selection method that integrates FR with LR is proposed, namely, Feature Selection combining three types of Conditional Relevance (TCRFS). Numerous experiments indicate that TCRFS outperforms the other 6 state-of-the-art multi-label approaches on 13 multi-label benchmark data sets from 4 domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.