This protocol describes a method combining phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers to characterize the germination of single bacterial spores. The characterization consists of the following steps: (i) loading heat-activated dormant spores into a temperature-controlled microscope sample holder containing a germinant solution plus a nucleic acid stain; (ii) capturing a single spore with optical tweezers; (iii) simultaneously measuring phase-contrast images, Raman spectra and fluorescence images of the optically captured spore at 2- to 10-s intervals; and (iv) analyzing the acquired data for the loss of spore refractility, changes in spore-specific molecules (in particular, dipicolinic acid) and uptake of the nucleic acid stain. This information leads to precise correlations between various germination events, and takes 1-2 h to complete. The method can also be adapted to use multi-trap Raman spectroscopy or phase-contrast microscopy of spores adhered on a cover slip to simultaneously obtain germination parameters for multiple individual spores.
We present a methodology that combines external phase contrast microscopy, Raman spectroscopy, and optical tweezers to monitor a variety of changes during the germination of single Bacillus cereus spores in both nutrient (l-alanine) and non-nutrient (Ca-dipicolinic acid (DPA)) germinants with a temporal resolution of approximately 2 s. Phase contrast microscopy assesses changes in refractility of individual spores during germination, while Raman spectroscopy gives information on changes in spore-specific molecules. The results obtained include (1) the brightness of the phase contrast image of an individual dormant spore is proportional to the level of CaDPA in that spore; (2) the end of the first Stage of germination, revealed as the end of the rapid drop in spore refractility by phase contrast microscopy, precisely corresponds to the completion of the release of CaDPA as revealed by Raman spectroscopy; and (3) the correspondence between the rapid drop in spore refractility and complete CaDPA release was observed not only for spores germinating in the well-controlled environment of an optical trap but also for spores germinating when adhered on a microscope coverslip. Using this latter method, we also simultaneously characterized the distribution of the time-to-complete-CaDPA release (T(release)) of hundreds of individual B. cereus spores germinating with both saturating and subsaturating concentrations of l-alanine and with CaDPA.
Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause autosomal-dominant Parkinson's disease (PD) and contribute to sporadic PD. LRRK2 contains Guanosine-5'-triphosphate (GTP) binding, GTPase and kinase activities that have been implicated in the neuronal degeneration of PD pathogenesis, making LRRK2, a potential drug target. To date, there is no disease-modifying drug to slow the neuronal degeneration of PD and no published LRRK2 GTP domain inhibitor. Here, the biological functions of two novel GTP-binding inhibitors of LRRK2 were examined in PD cell and mouse models. Through a combination of computer-aided drug design (CADD) and LRRK2 bio-functional screens, two novel compounds, 68: and 70: , were shown to reduce LRRK2 GTP binding and to inhibit LRRK2 kinase activity in vitro and in cultured cell assays. Moreover, these two compounds attenuated neuronal degeneration in human SH-SY5Y neuroblastoma cells and mouse primary neurons expressing mutant LRRK2 variants. Although both compounds inhibited LRRK2 kinase activity and reduced neuronal degeneration, solubility problems with 70: prevented further testing in mice. Thus, only 68: was tested in a LRRK2-based lipopolysaccharide (LPS)-induced pre-inflammatory mouse model. 68: reduced LRRK2 GTP-binding activity and kinase activity in brains of LRRK2 transgenic mice after intraperitoneal injection. Moreover, LPS induced LRRK2 upregulation and microglia activation in mouse brains. These findings suggest that disruption of GTP binding to LRRK2 represents a potential novel therapeutic approach for PD intervention and that these novel GTP-binding inhibitors provide both tools and lead compounds for future drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.