The separation of acetylene from ethylene is a crucial process in the petrochemical industry, as even small acetylene impurities can lead to premature termination of ethylene polymerization. Herein, we present the synthesis of a robust, crystalline naphthalene diimide porous aromatic framework via imidization of linear naphthalene-1,4,5,8-tetracarboxylic dianhydride and triangular tris(4-aminophenyl)amine. The resulting material, PAF-110, exhibits impressive thermal and long-term structural stability, as indicated by thermogravimetric analysis and powder X-ray diffraction characterization. Gas adsorption characterization reveals that PAF-110 has a capacity for acetylene that is more than twice its ethylene capacity at 273 K and 1 bar, and it exhibits a moderate acetylene selectivity of 3.9 at 298 K and 1 bar. Complementary computational investigation of each guest binding in PAF-110 suggests that this affinity and selectivity for acetylene arises from its stronger electrostatic interaction with the carbonyl oxygen atoms of the framework. To the best of our knowledge, PAF-110 is the first crystalline porous organic material to exhibit selective adsorption of acetylene over ethylene, and its properties may provide insight into the further optimized design of porous organic materials for this key gas separation.
A series of porphyrin-based porous aromatic frameworks are synthesized through a facile approach, and they possess high adsorption capacity and high adsorption selectivity values of small hydrocarbons.
Light hydrocarbons (C1–C3) are used as basic energy feedstocks and as commodity organic compounds for the production of many industrially necessary chemicals. Due to the nature of the raw materials and production processes, light hydrocarbons are generated as mixtures, but the high‐purity single‐component products are of vital importance to the petrochemical industry. Consequently, the separation of these C1–C3 products is a crucial industrial procedure that comprises a significant share of the total global energy consumption per year. As a complement to traditional separation methods (distillation, partial hydrogenation, etc.), adsorptive separations using porous solids have received widespread attention due to their lower energy costs and higher efficiency. Extensive research has been devoted to the use of porous materials such as zeolites and metal‐organic frameworks (MOFs) as solid adsorbents for these key separations, owing to the high porosity, tunable pore structures, and unsaturated metal sites present in these materials. Recently, porous organic framework (POF) materials composed of organic building blocks linked by covalent bonds have also shown excellent properties in light hydrocarbon adsorption and separation, sparking interest in the use of these materials as adsorbents in separation processes. This Minireview summarizes the recent advances in the use of POFs for light hydrocarbon separations, including the separation of mixtures of methane/ethane, methane/propane, ethylene/ethane, acetylene/ethylene, and propylene/propane, while highlighting the relationships between the structural features of these materials and their separation performances. Finally, the difficulties, challenges, and opportunities associated with leveraging POFs for light hydrocarbon separations are discussed to conclude the review.
Removal of notorious sulfur compounds to produce low-sulfur-content (≤10 ppm) diesel is necessary and vital for modern industry and environmental protection. A new type of inorganic–organic hybrid material has been designed and synthesized via confining molybdenum-containing polyoxometalate (POM) clusters within porous aromatic framework-1 (PAF-1) cavities named POM–PAF-1. Deep oxidative desulfurization experiments reveal that POM–PAF-1 possesses excellent reactivity under mild conditions, exemplified by a sulfur removal degree of 98.5% dibenzothiophene within 30 min at 30 °C. The improvement in oxidative desulfurization reactivity from traditional porous POM-based catalysts is owing to uniform POMs and lipophilic and porous PAF-1. The high performance of POM–PAF-1 in terms of excellent reactivity and good stability means it has potential in new heterogeneous catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.