Crane systems have been widely applied in logistics due to their efficiency of transportation. The parameters of a crane system may vary from each transport, therefore the anti-sway controller should be designed to be insensitive to the variation of system parameters. In this paper, we focus on pure neural network adaptive tracking controller design issue that does not require the parameters of crane systems, i.e. the trolley mass, the payload mass, the cable lengths, and etc. The proposed neural network controller only requires the output feedback signals of the trolley, i.e. the position and the velocity, which means no sway measuring equipment is needed. The Lyapunov method is utilized to design the weights update law of neural network, and the robustness of the proposed controller is proved by the Lyapunov stability theory. The results of numerical simulations show that the proposed neural network controller has excellent performance of trolley position tracking and payload anti-sway controlling. KEYWORDS adaptive control, anti-sway control, double-pendulum crane systems, Lyapunov stability theory, neural network control 1 | INTRODUCTION Crane systems with cable hoisting mechanism are typically under-actuated systems. They play an important role in logistics and are widely used in container harbors, railway container yards, and other industrial factories. As cable hoisting mechanism is adopted, the weight of the crane is reduced, but the payload swings unavoidably during the transportation as well as reaching the desired position. The sway of the payload decreases the efficiency of crane's transportation and may result in hazards, such as collision, tip over, and etc. To improve the effectiveness and the safety of crane, researchers proposed many anti-sway control strategies to position the trolley accurately and eliminate the payload sway. All the anti-sway control strategies aim to: i) move the trolley safely, fast, and accurately to the desired position, and ii) decrease the sway of the payload as much as possible during the transportation and eliminate the residual sway when reaching the desired position. TIf the parameters of crane systems are exactly known, open-loop control strategies can work effectively. Singhose et al. reviewed the command shaping/input shaping [1] and implemented the method on doublependulum crane systems [2,3]. It shows that the method
The hydraulic actuated telescopic boom system is the primary operation actuator of mobile cranes and aerial platform vehicles. The purpose of this paper is to develope a unified mathematic model of such a boom system which is a multi-domain system consisting of boom structure and hydraulic drive system. The model is formulated within the port-Hamilton (PH) formalism using the definition of hydraulic system and elastic boom structure as (Stokes-) Dirac structures. The Port-Hamiltonian systems can be easily interconnected thus allowing the description of a complex system as a composition of subsystems. This property is especially useful to model a multi-domain system with energy exchanges between subsystems. Considering the boom structure as a Timoshenko beam, the luffing operation of boom system is simplified in a plane coordinate system. The Port-Hamiltonian model of the hydraulic system and the boom structure are described with details separately, a structure-preserving discretization is applied to transfer the distributed-parameter boom model into a lumped-parameter model. Then the interconnections between the subsystems are illustrated and a complete simulation including hydraulic system is accomplished in MATLAB/Simulink.
The screw flight, spiral blade welded on the axial cylinder, is the core component of the screw ship unloader and can be seriously worn by the materials during long-term conveying. The damaged screw flight will make the screw ship unloader unable to unload materials or even lead to an accident. However, the existing wear model cannot be directly applied to predict the wear of the screw flight under different working conditions. Hence, we established a new screw flight wear model based on the Archard wear model and Continuous Medium Hypothesis to predict the service life of the screw flight. Three influencing factors, including speed, filling rate, and pitch, were selected to study the wear law of the screw flight, and the wear law was verified by EDEM simulation. Results indicate that the simulation results affected by the changes in various factors were consistent with the calculation model. With the increase of rotation speed and filling rate, the screw flight wear rate increased. Nevertheless, with the increase of pitch, the screw flight wear rate first increased and then decreased. The screw flight wear model can be used to calculate the wear rate under different working conditions for the screw flight life prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.