An optimal pathway of serum potassium monitoring not only saves limited ward space but also allows for early correction of hypokalemia in patients undergoing laparotomy.
Chordin-like 1 (CHRDL1), an inhibitor of bone morphogenetic proteins(BMPs), has been recently reported to participate in the progression of numerous tumors, however, its role in lung adenocarcinoma (LUAD) remains unclear. Our study aimed to demonstrate relationship between CHRDL1 and LUAD based on data from The Cancer Genome Atlas (TCGA). Among them, CHRDL1 expression revealed promising power for distinguishing LUAD tissues form normal sample. Low CHRDL1 was correlated with poor clinicopathologic features, including high T stage (OR=0.45,
P
<0.001), high N stage (OR=0.57,
P
<0.003), bad treatment effect (OR=0.64,
P
=0.047), positive tumor status (OR=0.63,
P
=0.018), and TP53 mutation (OR=0.49,
P
<0.001). The survival curve illustrated that low CHRDL1 was significantly correlative with a poor overall survival (HR=0.60,
P
<0.001). At multivariate Cox regression analysis, CHRDL1 remained independently correlative with overall survival. GSEA identified that the CHRDL1 expression was related to cell cycle and immunoregulation. Immune infiltration analysis suggested that CHRDL1 was significantly correlative with 7 kinds of immune cells. Immunohistochemical validation showed that CHRDL1 was abnormally elevated and negatively correlated with Th2 cells in LUAD tissues. In conclusion, CHRDL1 might become a novel prognostic biomarker and therapy target in LUAD. Moreover, CHRDL1 may improve the effectiveness of immunotherapy by regulating immune infiltration.
The development of ion-selective membranes for the selective response of a particular ion has been studied for many years; however, imaging the response of the membrane with a low detection limit is challenging. Here, high spatial-resolution electrochemical imaging of this response down to picomolar is achieved using scanning ion conductive microscopy. The detection strategy relies on the exclusion of a small amount of counter ions from the membrane in the presence of a low concentration of target ions in the solution. These excluded counter ions are adsorbed at the membrane−solution interface, leading to more positive charges at the surface. The resultant elevation of the ionic current in the approach curve behaves as the response for the target ions down to 10 −11 M, which is much more sensitive than that using potentiometric measurement. The constant-current scanning of the membrane exhibits the fluctuation of the apparent surface height that is correlated with the ionic concentration, permitting the imaging of the response at the nanoscale. The achievement of highly sensitive and spatial-resolution imaging for the ionic response enable the collection of spatial response at the ion-selective membrane, which will greatly advance the study of ion-selective electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.