Bulk Ta4AlC3 ceramic was prepared by an in situ reaction synthesis/hot‐pressing method using Ta, Al, and C powders as the starting materials. The lattice parameter and a new set of X‐ray diffraction data were obtained. The physical and mechanical properties of Ta4AlC3 ceramic were investigated. Ta4AlC3 is a good electrical and thermal conductor. The flexural strength and fracture toughness are 372 MPa and 7.7 MPa·m1/2, respectively. Typically, plate‐like layered grains contribute to the damage tolerance of Ta4AlC3. After indentation up to a 200 N load, no obvious degradation of the residual flexural strength of Ta4AlC3 was observed, demonstrating the damage tolerance of this ceramic. Even at above 1200°C in air, Ta4AlC3 still retains a high strength and shows excellent thermal shock resistance, which renders it a promising high‐temperature structural material.
An in situ reactive hot‐pressing process using zirconium (zirconium hydride), aluminum, and graphite as staring materials and Si and Y2O3 as additives was used to synthesize bulk Zr3Al3C5 ceramics. This method demonstrates the advantages of easy synthesis, lower sintering temperature, high purity and density, and improved mechanical properties of synthesized Zr3Al3C5. Its electrical and thermal properties were measured. Compared with ZrC, Zr3Al3C5 has a relatively low hardness (Vickers hardness of 12.5 GPa), comparable stiffness (Young's modulus of 374 GPa), but superior strength (flexural strength of 488 GPa) and toughness (fracture toughness of 4.68 MPa·m1/2). In addition, the stiffness decreases slowly with increasing temperature and at 1600°C remains 78% of that at ambient temperature, indicating that Zr3Al3C5 is a potential high‐temperature structural ceramic.
The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser-based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO 2 . A variety of microstructure imaging techniques including X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries. D. Clarke-contributing editor Manuscript No. 32233.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.