Oily sludge produced in the process of petroleum exploitation and utilization is a kind of hazardous waste that needs to be urgently dealt with in the petrochemical industry. The oil content of oily sludge is generally between 15–50% and has a great potential for oil resource utilization. However, its composition is complex, in which asphaltene is of high viscosity and difficult to separate. In this study, The oily sludge was extracted with toluene as solvent, supplemented by three kinds of ionic liquids (1-ethyl-3-methylimidazole tetrafluoroborate ([EMIM] [BF4]), 1-ethyl-3-methylimidazole trifluoro-acetate ([EMIM] [TA]), 1-ethyl-3-methylimidazole Dicyandiamide ([EMIM] [N(CN)2])) and three kinds of deep eutectic solutions (choline chloride/urea (ChCl/U), choline chloride / ethylene glycol (ChCl/EG), and choline chloride/malonic acid (ChCl/MA)). This experiment investigates the effect of physicochemical properties of the solvents on oil recovery and three machine learning methods (ridge regression, multilayer perceptron, and support vector regression) are used to predict the association between them. Depending on the linear correlation of variables, it is found that the conductivity of ionic liquid is the key characteristic affecting the extraction treatment in this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.