We investigated the expression and function of serum response factor (SRF) in endothelial-mesenchymal transition (EndMT) in glomerular endothelial cells (GEnCs) of diabetic nephropathy (DN). The expression of SRF, endothelial markers (VE-cadherin, CD31), and mesenchymal markers (α-SMA, FSP-1, fibronectin) was examined in GEnCs following high glucose or in renal cortex tissues of DN rats. SRF was upregulated by SRF plasmids and downregulated by CCG-1423 (a small molecule inhibitor of SRF) to investigate how SRF influenced EndMT in GEnCs of DN. Streptozocin (STZ) was used to generate diabetes mellitus DM in rats. In GEnCs after high glucose treatment and in renal cortex tissues of diabetic rats, SRF, α-SMA, FSP-1, and fibronectin increased, while VE-cadherin and CD31 declined. SRF overexpression in GEnCs induced expression of Snail, an important transcription factor mediating EndMT. Blockade of SRF reduced Snail induction, protected GEnCs from EndMT, and ameliorated proteinuria. Together, increased SRF activity provokes EndMT and barrier dysfunction of GEnCs in DN. Targeting SRF by small molecule inhibitor may be an attractive therapeutic strategy for DN.
We investigated the role of serum response factor (SRF) in epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells (TECs) in diabetic nephropathy (DN). The expression of SRF, epithelial markers (E-cadherin and ZO-1), and mesenchymal markers (fibronectin, collagen-1, α-SMA, FSP-1) was examined in human proximal renal tubular epithelial cells (HK-2 cells) or renal medulla tissues following high glucose. SRF was upregulated by SRF plasmids and downregulated by CCG-1423 (a small molecule inhibitor of SRF) to investigate how SRF influenced EMT in TECs of DN. Streptozotocin was used to generate DM in rats. In HK-2 cells after high-glucose treatment and renal medulla tissues of diabetic rats, SRF, fibronectin, collagen-1, α-SMA, and FSP-1 increased, while E-cadherin and ZO-1 declined. SRF overexpression in HK-2 cells induced expression of Snail, an important transcription factor mediating EMT. Blockade of SRF by CCG-1423 reduced Snail induction and protected TECs from EMT both in vitro and in vivo. Together, increased SRF activity promotes EMT in TECs and dysfunction in DN. Targeting SRF by small molecule inhibitor may be an attractive therapeutic strategy for DN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.