is study develops three measures to optimize the junction-tree-based reinforcement learning (RL) algorithm, which will be used for network-wide signal coordination. e first measure is to optimize the frequency of running the junction-tree algorithm (JTA) and the intersection status division. e second one is to optimize the JTA information transmission mode. e third one is to optimize the operation of a single intersection. A test network and three test groups are built to analyze the optimization effect. Group 1 is the control group, group 2 adopts the optimizations for the basic parameters and the information transmission mode, and group 3 adopts optimizations for the operation of a single intersection. Environments with different congestion levels are also tested. Results show that optimizations of the basic parameters and the information transmission mode can improve the system efficiency and the flexibility of the green light, and optimizing the operation of a single intersection can improve the efficiency of both the system and the individual intersection. By applying the proposed optimizations to the existing JTA-based RL algorithm, network-wide signal coordination can perform better.
In order to alleviate the influence of low-speed vehicles on tunnel safety, this paper discusses the setting method of variable lane boundaries in urban tunnels. VISSIM simulation software is used to analyze the influence of low-speed vehicles on tunnel traffic flow when lane changes are allowed and when lane changes are prohibited. The results show that the influence of low-speed vehicles on the average speed of traffic flow in urban tunnels is the greatest, and the influence of low-speed vehicles on the average speed of traffic flow can be significantly alleviated when lane changes are allowed in the lane dividing line. When the speed of low-speed vehicles is 40 km/h and the variable lane is set, the average delay time is reduced by 30–50%. The existence of low-speed vehicles significantly increased the average delay time of the local lane, and the lower the vehicle speed and the greater the road traffic volume, the longer the average delay time. When the speed of low-speed vehicles is 40 km/h and the traffic volume is 1200 pcu/h, the traffic density of the right-hand lane decreases by 43.5% after the variable lane is set. While lane changing is prohibited, the presence of low-speed vehicles causes a backlog of vehicles in the rear of the lane, which leads to a significant increase in traffic density. Setting lane-changing permits can alleviate the impact of low-speed vehicles on traffic flow. The research results can provide a scientific basis for the operation and management of urban tunnels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.