Abstract:The initial boundary value problem for a system of viscoelastic wave equations of Kirchhoff type with strong damping is considered. We prove that, under suitable assumptions on relaxation functions and certain initial data, the decay rate of the solutions energy is exponential.
The general decay and blow-up of solutions for a system of viscoelastic equations of Kirchhoff type with strong damping is considered. We first establish two blow-up results: one is for certain solutions with nonpositive initial energy as well as positive initial energy by exploiting the convexity technique, the other is for certain solutions with arbitrarily positive initial energy based on the method of Li and Tsai. Then, we give a decay result of global solutions by the perturbed energy method under a weaker assumption on the relaxation functions.
In this paper we consider the viscoelastic wave equation of Kirchhoff type:with Dirichlet boundary conditions. Under some suitable assumptions on g and the initial data, we established a global nonexistence result for certain solutions with arbitrarily high energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.