The bioorthogonality of tetrazole photoclick chemistry has been reassessed. Upon photolysis of a tetrazole, the highly reactive nitrile imine formed undergoes rapid nucleophilic reaction with a variety of nucleophiles present in a biological system, along with the expected cycloaddition with alkenes. The alternative use of the tetrazole photoclick reaction was thus explored: tetrazoles were incorporated into Bodipy and Acedan dyes, providing novel photo-crosslinkers with one- and two-photon fluorescence Turn-ON properties that may be developed into protein-detecting biosensors. Further introduction of these photo-activatable, fluorogenic moieties into staurosporine resulted in the corresponding probes capable of photoinduced, no-wash imaging of endogenous kinase activities in live mammalian cells.
Intracellular delivery of therapeutic proteins is highly challenging and in most cases requires chemical or genetic modifications. Herein, two complementary approaches for endocytosis-independent delivery of proteins to live mammalian cells are reported. By using either a "glycan" tag naturally derived from glycosylated proteins or a "traceless" tag that could reversibly label native lysines on non-glycosylated proteins, followed by bioorthogonal conjugation with cell-penetrating poly(disulfide)s (CPDs), we achieved intracellular delivery of proteins (including antibodies and enzymes) which, upon spontaneous degradation of CPDs, led to successful release of their "native" functional forms with immediate bioavailability.
The design of drug delivery systems capable of minimal endolysosomal trapping, controlled drug release, and real-time monitoring of drug effect is highly desirable for personalized medicine. Herein, by using mesoporous silica nanoparticles (MSNs) coated with cell-penetrating poly(disulfide)s and a fluorogenic apoptosis-detecting peptide (DEVD-AAN), we have developed a platform that could be uptaken rapidly by mammalian cells via endocytosis-independent pathways. Subsequent loading of these MSNs with small molecule inhibitors and antisense oligonucleotides resulted in intracellular release of these drugs, leading to combination inhibition of endogenous miR-21 activities which was immediately detectable by the MSN surface-coated peptide using two-photon fluorescence microscopy.
MicroRNAs (miRNAs) regulate a variety of biological processes. The liver-specific, highly abundant miR-122 is implicated in many human diseases including cancer. Its inhibition has been found to result in a dramatic loss in the ability of Hepatitis C virus (HCV) to infect host cells. Both antisense technology and small molecules have been used to independently inhibit endogenous miR-122 function, but not in combination. Intracellular stability, efficient delivery, hydrophobicity, and controlled release are some of the current challenges associated with these novel therapeutic methods. Reported herein is the first single-vehicular system, based on mesoporous silica nanoparticles (MSNs), for simultaneous cellular delivery of miR-122 antagomir and small molecule inhibitors. The controlled release of both types of inhibitors depends on the expression levels of endogenous miR-122, thus enabling these drug-loaded MSNs to achieve combination inhibition of its targeted mRNAs in Huh7 cells.
The design of the first dual-purpose activity-based probe of monoamine oxidase B (MAO-B) is reported. This probe is highly selective towards MAO-B, even at high MAO-A expression levels, and could sensitively report endogenous MAO-B activities by both in situ proteome profiling and live-cell bioimaging. With a built-in imaging module as part of the probe design, the probe was able to accomplish what all previously reported MAO-B imaging probes failed to do thus far: the live-cell imaging of MAO-B activities without encountering diffusion problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.