Hollow carbon nanospheres are synthesized via the hydrothermal carbonization of glucose in the presence of nanosized latexes templates. The resulting disordered carbon hollow nanospheres exhibits excellent characteristics in terms of reversible capacities, cycling performance, and rate capability for application as an anode material in Na‐based batteries.
Hydrothermal carbonization (HTC) is an aqueous-phase route to produce carbon materials using biomass or biomass-derived precursors. In this paper, a comprehensive physicochemical and textural characterization of HTC materials obtained using four different precursors, namely, xylose, glucose, sucrose, and starch, is presented. The development of porosity in the prepared HTC materials as a function of thermal treatment (under an inert atmosphere) was specifically monitored using N(2) and CO(2) sorption analysis. The events taking place during the thermal treatment process were studied by a combined thermogravimetric/infrared (TGA-IR) measurement. Interestingly, these inexpensive biomass-derived carbon materials show good selectivity for CO(2) adsorption over N(2) (CO(2)/N(2) selectivity of 20 at 273 K, 1 bar and 1:1 gas composition). Furthermore, the elemental composition, morphologies, degree of structural order, surface charge, and functional groups are also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.