BackgroundFatty acids have been shown to modulate intestinal cholesterol absorption in cells and animals, a process that is mediated by several transporter proteins. Of these proteins, Niemann-Pick C1-Like 1 (NPC1L1) is a major contributor to this process. The current study investigates the unknown mechanism by which fatty acids modulate cholesterol absorption.MethodsWe evaluated the effects of six fatty acids palmitic acid (PAM), oleic acid (OLA), linoleic acid (LNA), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cholesterol uptake and transport in human enterocytes Caco-2 cells, and on the mRNA expression levels of NPC1L1, others proteins (ABCG5, ABCG8, ABCA1, ACAT2, MTP, Caveolin 1, Annexin-2) involved in cholesterol absorption, and SREBP-1 and SREBP-2 that are responsible for lipid metabolism.ResultsThe polyunsaturated fatty acids (PUFAs), especially for EPA and DHA, dose-dependently inhibited cholesterol uptake and transport in Caco-2 monolayer, while saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) had no inhibitory effects. EPA and DHA inhibited cholesterol absorption in Caco-2 monolayer might be caused by down-regulating NPC1L1 mRNA and protein levels, which were associated with inhibition of SREBP-1/− 2 mRNA expression levels.ConclusionResults from this study indicate that functional food containing high PUFAs may have potential therapeutic benefit to reduce cholesterol absorption. Further studies on this topic may provide approaches to control lipid metabolism and to promote health.Electronic supplementary materialThe online version of this article (10.1186/s12944-018-0675-y) contains supplementary material, which is available to authorized users.
Phospholipids have been shown to modulate intestinal cholesterol absorption in cells and animals, a process that is regulated by several transporter proteins. Of these proteins, Niemann-Pick C1-Like 1 (NPC1L1) is a major contributor to this process. The mechanism by which phospholipids modulate cholesterol absorption remains unknown. Here, we evaluate the effects of egg-yolk phospholipids on cholesterol absorption and transport in human colon carcinoma cell line (Caco-2 cells) and on the expression of NPC1L1 and others proteins associated with cholesterol absorption (ABCG5, ABCG8, ABCA1, ACAT2, MTP, CAV-1, ANX-2). The roles of SREBP-1 and SREBP-2 in this process were also investigated. The results show that egg-yolk sphingomyelin (CerPCho) and phosphatidylcholine (PtdCho) inhibit cholesterol transport in the Caco-2 monolayer in a dose-dependent manner. These might be due to the decrease of the cholesterol solubility in micelles as well as to the increases in the micellar sizes and the bile acid-binding capacity. Furthermore, the treatments with egg-yolk CerPCho or PtdCho at 1.2 mmol/L reduced the expression levels of NPC1L1 protein to 21 or 22%, respectively, and its mRNA to 9 or 31% of that in the control group (p < 0.05). Moreover, there was a general inhibitory effect of egg-yolk PtdCho and CerPCho on the mRNA levels of SREBP-1, and SREBP-2. These results suggest that the inhibitory effect of egg-yolk CerPCho and PtdCho on cholesterol transport might be due to their interference with the physicochemical properties of micelles and their regulations on the expression of the NPC1L1 gene.
Natural antioxidants derived from agricultural by-products have great promise and ecological advantages in the treatment of oxidative stress-related diseases. The eggshell membrane (ESM) from hatched eggs, i.e., the hatched ESM, is a globally abundant agricultural byproduct, and its high-value utilization has been rarely studied compared to the well-studied ESM from fresh eggs. In this research, we systematically characterized the hatched ESM as a novel source of antioxidant hydrolysates and explored their potential role in H2O2-induced human chondrocytes. The results showed that the hatched ESM is a protein-rich fibrous mesh material with a significantly different structure and composition from those of fresh ESM. Enzymatic hydrolysis of hatched ESM can produce antioxidant hydrolysates rich in low molecular weight (MW) peptides, which mainly derived from the Lysyl oxidase homolog by Nano-LC-MS/MS analysis. The peptide fraction with MW < 3 kDa (HEMH-I) exhibited the highest DPPH radical scavenging, Fe2+-chelating, and Fe3+-reducing abilities. In H2O2-induced human SW1353 chondrocytes, HEMH-I treatment significantly increased the cell viability and ameliorated oxidative stress, inflammatory response, and cartilage matrix degradation by reducing the level of ROS, matrix metalloprotease 3 (MMP3), MMP13, and IL-6, and by promoting the expression of SOD and type II collagen, potentially through activating the cellular Keap1/Nrf2/HO-1 pathway. This study provides a theoretical basis for the value-added application of hatched ESM waste to produce antioxidant hydrolysates and indicates their potential as functional food and pharmaceuticals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.