Background Recent studies have demonstrated the important role of metabolomics in the pathogenesis of asthma. However, the role of lung metabolomics in childhood persistent wheezing (PW) or wheezing recurrence remains poorly understood. Methods In this prospective observational study, we performed a liquid chromatography/mass spectrometry-based metabolomic survey on bronchoalveolar lavage samples collected from 30 children with PW and 30 age-matched infants (control group). A 2-year follow-up study on these PW children was conducted. Results Children with PW showed a distinct characterization of respiratory metabolome compared with control group. Children with PW had higher abundances of choline, oleamide, nepetalactam, butyrylcarnitine, l-palmitoylcarnitine, palmitoylethanolamide, and various phosphatidylcholines. The glycerophospholipid metabolism pathway was the most relevant pathway involving in PW pathophysiologic process. Additionally, different gender, prematurity, and systemic corticoids use demonstrated a greater impact in airway metabolite compositions. Furthermore, for PW children with recurrence during the follow-up period, children who were born prematurely had an increased abundance of butyrylcarnitine relative to those who were carried to term. Conclusions This study suggests that the alterations of lung metabolites could be associated with the development of wheezing, and this early alteration could also be correlated with wheezing recurrence later in life.
Objective:To analyze the etiology of chest diffuse radiological changes (DRC) in children older than 2 years.MethodsA retrospective study was conducted on a primary cohort of children with DRC underwent high resolution computed tomography (HRCT).ResultsDRC mainly included bronchial wall thickening, interlobular septal thickening, pleural thickening, ground glass opacity, mosaic perfusion, reticular & linear opacities, nodular opacity, and tree-in-bud. Of the identified 457 children with DRC, 83 of children older than 2 years with DRC were included in the present study. Ground glass opacity (53, 63.9%) and reticular & linear opacities (44, 53.0%) were frequently identified findings of HRCT, and no tree-in-bud pattern was observed. By contrast, among children with DRC by M. pneumoniae (n = 64), bronchial wall thickening (33, 51.6%), and mosaic perfusion (17, 26.6%) were common patterns of HRCT in addition to ground glass opacity (36, 56.3%). Most of etiologies were connective tissue disease (24, 28.9%), followed by diffuse alveolar hemorrhage syndrome (9, 10.8%), Langerhans cell histiocytosis (7, 8.4%), and recurrent aspiration (6, 7.2%).ConclusionsThis study adds further insights into the role of HRCT in diagnosing childhood interstitial lung diseases, indirectly reflecting disease compositions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.