The reticulon family has been found to induce apoptosis, inhibit axon regeneration and regulate protein trafficking. However, little is known about the mechanisms of how reticulon proteins are involved in neuronal death-promoting processes during ischemia. Here, we report that the expression of Reticulon Protein 1-C (RTN1-C) was associated with the progression of cerebral ischemia/reperfusion (I/R) injury. Using a combination of rat middle cerebral artery occlusion (MCAO) stroke and oxygen-glucose deprivation followed by reoxygenation (OGD/R) models, we determined that the expression of RTN1-C was significantly increased during cerebral ischemic/reperfusion. RTN1-C overexpression induced apoptosis and increased the cell vulnerability to ischemic injury, whereas RTN1-C knockdown reversed ischemia-induced apoptosis and attenuated the vulnerability of OGD/R-treated neural cells. Mechanistically, we demonstrated that RTN1-C mediated OGD/R-induced apoptosis through ER stress and mitochondria-associated pathways. RTN1-C interacted with Bcl-xL and increased its localization in the ER, thus reducing the anti-apoptotic activity of Bcl-xL. Most importantly, knockdown of Rtn1-c expression in vivo attenuated apoptosis in MCAO rats and reduced the extent of I/R-induced brain injury, as assessed by infarct volume and neurological score. Collectively, these data support for the first time that RTN1-C may represent a novel candidate for therapies against cerebral ischemia/reperfusion injury.
BackgroundThe neurotropic parasite T. gondii is widespread among mammalian hosts including humans. During the course of T. gondii infection, the central nervous system is the most commonly damaged of all invasive organs. The polymorphic rhoptry protein ROP18 has been identified as a key factor in the pathogenesis of T. gondii; however, the molecular mechanism by which this protein exerts neuropathogenesis remains elusive.MethodsImmunofluorescence staining was performed to detect neuropathogenesis of the mouse brain tissues. The apoptosis of neural cells and the expressions of related proteins in the endoplasmic reticulum stress (ER Stress)-mediated apoptosis pathway were detected by flow cytometry and Western blotting.ResultsImmunofluorescence staining reveals induction of the propidium iodide (PI) - positive neural cells in mouse cerebral cortex and hippocampus infected with ROP18 over-expressing transgenic tachyzoites. Western blotting analyses reveal that ROP18 increases the expressions of cleaved caspase-12, CHOP and cleaved caspase-3 when compared to the control groups. After the pretreatment of Z-ATAD-FMK (a specific caspase-12 inhibitor), the apoptotic level of neural cells had an apparent decline, and correspondingly, the expressions of those related proteins were notably decreased.ConclusionsOur findings here highlight that the virulence factor ROP18 in T. gondii may contribute to neuronal apoptosis through the ER stress-mediated apoptosis pathway, which may be a potential molecular mechanism responsible for neurological disorders of toxoplasmosis.
Traumatic brain injury (TBI) is a common cause of death and disability. Enhancing the midline-crossing of the contralateral corticospinal tract (CST) to the denervated side of spinal cord facilitates functional recovery after TBI. Activation of the gamma isoform of PKC (PKCγ) in contralateral CST implicates its roles in promoting CST remodeling after TBI. In this study, we deployed loss and gain of function strategies in N2a cells and primary cortical neurons in vitro, and demonstrated that PKCγ is not only important but necessary for neuronal differentiation, neurite outgrowth and axonal branching but not for axonal extension. Mechanically, through the phosphorylation of GSK3β, PKCγ stabilizes the expression of cytosolic β-catenin and increase GAP43 expression, thus promoting axonal outgrowth. Further, rAAV2/9-mediated delivery of constitutive PKCγ in the corticospinal tract after unilateral TBI in vivo additionally showed that specifically delivery of active PKCγ mutant to cortical neuron promotes midline crossing of corticospinal fibers from the uninjured side to the denervated cervical spinal cord. This PKCγ-mediated injury response promoted sensorimotor functional recovery. In conclusion, PKCγ mediates stability of β-catenin through the phosphorylation of GSK3β to facilitate neuronal differentiation, neurite outgrowth and axonal branching, and PKCγ maybe a novel therapeutic target for physiological and functional recovery after TBI.
Sustained activation of signal transducer and activator of transcription 3 (STAT3) is a critical contributor in tumorigenesis and chemoresistance, thus making it an attractive cancer therapeutic target. Here, SH2 domain‐containing adapter protein F (SHF) is identified as a tumor suppressor in glioblastoma Multiforme (GBM) and its negative regulation of STAT3 activity is characterized. Mechanically, SHF selectively binds and inhibits acetylated STAT3 dimerization without affecting STAT3 phosphorylation or acetylation. Additionally, by blocking STAT3‐DNMT1 (DNA Methyltransferase 1) interaction, SHF relieves methylation of tumor suppressor genes. The SH2 domain is documented to be essential for SHF's actions on STAT3, and almost entirely replaces the functions of SHF on STAT3 independently. Moreover, the peptide C16 a peptide derived from the STAT3‐binding sites of SHF inhibits STAT3 dimerization and STAT3/DNMT1 interaction, and achieves remarkable growth inhibition in GBM cells in vitro and in vivo. These findings strongly identify targeting of the SHF/STAT3 interaction as a promising strategy for developing an optimal STAT3 inhibitor and provide early evidence of the potential clinical efficacy of STAT3 inhibitors such as C16 in GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.