Multisensor information fusion, when applied to fault diagnosis, the time-space scope, and the quantity of information are expanded compared to what could be acquired by a single sensor, so the diagnostic object can be described more comprehensively. This paper presents a methodology of fault diagnosis in rotating machinery using multisensor information fusion that all the features are calculated using vibration data in time domain to constitute fusional vector and the support vector machine (SVM) is used for classification. The effectiveness of the presented methodology is tested by three case studies: diagnostic of faulty gear, rolling bearing, and identification of rotor crack. For each case study, the sensibilities of the features are analyzed. The results indicate that the peak factor is the most sensitive feature in the twelve time-domain features for identifying gear defect, and the mean, amplitude square, root mean square, root amplitude, and standard deviation are all sensitive for identifying gear, rolling bearing, and rotor crack defect comparatively.
A spiral-bevel gear is a basic transmission component and is widely used in mechanical equipment; thus, it is important to monitor and diagnose its running state to ensure safe operation of the entire equipment setup. The vibration signals of spiral-bevel gears are typically quite complicated, as they present both nonlinear and nonstationary characteristics and are interfered with by strong noise. The complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method has been proven to be an effective method for analyzing this kind of signal. However, the fault feature information after CEEMDAN is not obvious and needs to be quantified. Permutation entropy can be used to quantify the randomness, complexity, and mutation of vibration time-series signals. This paper proposes to take the CEEMDAN-based permutation entropy as the sensitive feature for spiral-bevel gear fault identification. First, the raw vibration signal is decomposed by the CEEMDAN method to obtain a series of intrinsic modal functions (IMFs). The IMFs which included greater amounts fault information are selected as the optimal IMFs based on the correlation coefficient. Next, the permutation entropy values of the optimal IMFs are calculated. In order to obtain accurate permutation entropy values, the two key parameters, namely, embedding dimension and delay time, are optimized by using the overlapping parameter method. In order to assess the sensibility of the permutation entropy features, the support vector machine (SVM) is used as the classifier for fault mode identification, and the diagnostic accuracy can verify its sensibility. The permutation entropy of CEEMDAN-based/EEMD-based/EMD-based features, combined with SVM, is applied to identify three different fault modes of spiral-bevel gears. Their respective diagnostic accuracies are 100%, 88.33%, and 83.33%, which indicate that the CEEMDAN-based permutation entropy is the most sensitive feature for the fault identification of spiral-bevel gears.
This paper proposes a new approach combining autoregressive (AR) model and fuzzy cluster analysis for bearing fault diagnosis and degradation assessment. AR model is an effective approach to extract the fault feature, and is generally applied to stationary signals. However, the fault vibration signals of a roller bearing are non-stationary and non-Gaussian. Aiming at this problem, the set of parameters of the AR model is estimated based on higher-order cumulants. Consequently, the AR parameters are taken as the feature vectors, and fuzzy cluster analysis is applied to perform classification and pattern recognition. Experiments analysis results show that the proposed method can be used to identify various types and severities of fault bearings. This study is significant for non-stationary and non-Gaussian signal analysis, fault diagnosis and degradation assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.