Retrogressive landslide is caused by the lower rock mass sliding, so that the upper part loses support, is deformed, and starts to slide. In the process of highway construction, the incised slope often leads to retrogressive landslide, and the determination of the damage range of retrogressive landslide is of great significance for the control of the slope. Taking a highway retrogressive landslide in Hunan Province as the research object, the particle flow discrete element is used to numerically simulate the entire failure process of the slope. According to the complex geological conditions of the slope, the rock mass of each part of the slope model is divided, the displacement of key parts of the landslide is monitored, the whole failure process of the retrogressive landslide is simulated, and the lateral length of traction instability is calculated through the stability theory of the sliding pull-crack failure slope. The research shows that the incised slope is the root cause of the retrogressive landslide, and the rainfall is the direct cause. When the retrogressive landslide is treated in engineering practice, the lateral length of traction instability can be obtained according to the stability theory of the sliding pull-crack failure slope, to realize the accurate judgment of the traction failure range of the sliding body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.