MAP kinases transduce signals that are involved in a multitude of cellular pathways and functions in response to a variety of ligands and cell stimuli. Aberrant or inappropriate functions of MAPKs have now been identified in diseases ranging from cancer to inflammatory disease to obesity and diabetes. In many cell types, the MAPKs ERK1/2 are linked to cell proliferation. ERK1/2 are thought to play a role in some cancers, because mutations in Ras and B-Raf, which can activate the ERK1/2 cascade, are found in many human tumors. Abnormal ERK1/2 signaling has also been found in polycystic kidney disease, and serious developmental disorders such as cardio-facio-cutaneous syndrome arise from mutations in components of the ERK1/2 cascade. ERK1/2 are essential in well-differentiated cells and have been linked to long-term potentiation in neurons and in maintenance of epithelial polarity. Additionally, ERK1/2 are important for insulin gene transcription in pancreatic beta cells, which produce insulin in response to increases in circulating glucose to permit efficient glucose utilization and storage in the organism. Nutrients and hormones that induce or repress insulin secretion activate and/or inhibit ERK1/2 in a manner that reflects the secretory demand on beta cells. Disturbances in this and other regulatory pathways may result in the contribution of ERK1/2 to the etiology of certain human disorders.
Summary Histone lysine demethylase KDM4/JMJD2s are overexpressed in many human tumors including prostate cancer (PCa). KDM4s are co-activators of androgen receptor (AR) and thus potential therapeutic targets. Yet to date few KDM4 inhibitors that have anti-prostate tumor activity in vivo have been developed. Here we report the anti-tumor growth effect and molecular mechanisms of three novel KDM4 inhibitors (A1, I9, and B3). These inhibitors repressed the transcription of both AR and BMYB-regulated genes. Compound B3 is highly selective for a variety of cancer cell lines including PC3 cells that lack AR. B3 inhibited the in vivo growth of tumors derived from PC3 cells and ex vivo human PCa explants. We identified a novel mechanism by which KDM4B activates the transcription of polo-like kinase 1 (PLK1). B3 blocked the binding of KDM4B to the PLK1 promoter. Our studies suggested a potential mechanism-based therapeutic strategy for PCa and tumors with elevated KDM4B/PLK1 expression.
The WRKY transcription factor superfamily controls diverse developmental and physiological processes in plants. However, little is known about the factors that directly regulate the function of WRKY genes. In this study, we identified cis-acting elements and their binding proteins of rice OsWRKY13, a gene that plays a pivotal role in disease resistance against bacterial and fungal pathogens. Two novel pathogen-responsive cis-elements, PRE2 and PRE4, were characterized from the promoter region of OsWRKY13. The two cis-elements negatively regulate gene expression without pathogen challenge, and positively regulate gene expression after pathogen-induced protein binding. OsWRKY13 binds to PRE4, which harbours a novel W-like box. Another five proteins (Rad51-like; tubbylike; SWIM zinc finger and nucleotide-binding adaptor shared by APAF-1, certain R proteins and CED-4 (NB-ARC) domain containing proteins; and an unknown protein) also bind to one of the two cis-elements. Different proteins interacting with the same cis-element appear to have different DNA-binding core sequences. These proteins localize in the nucleus and show differential expression upon pathogen challenge. These results suggest that OsWRKY13 expression is regulated by multiple factors to achieve disease resistance.
Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activities are modulated in a manner that reflects the secretory demand on beta cells to integrate long- and short-term nutrient sensing information. Our studies have focused on the mechanisms of ERK1/2 activation in beta cells and on the actions of ERK1/2 that regulate beta cell function. Insulin and growth factors regulate ERK1/2 in beta cells in a largely calcium-independent manner. Nutrients and anticipatory hormones, in contrast, activate ERK1/2 in a calcium-dependent manner in these cells. We are exploring the key intermediates in these distinct activation pathways and find that calcineurin is essential for the nutrient pathway but is not essential for the growth factor pathway. Using reporter assays, heterologous reconstitution, electrophoretic mobility shift assays, Northern analysis, Q-PCR and chromatin immunoprecipitation, we have examined several genes that are regulated by ERK1/2, primarily the insulin gene and the apoptotic factor C/EBP-homologous protein (CHOP)-10 (GADD153/DDIT-3), a bZIP protein. ERK1/2-sensitive transcriptional regulators common to these two genes are C/EBP-beta and MafA. The insulin promoter is both positively and negatively regulated by glucose and other nutrients. Exposure to glucose for minutes to hours causes an increase in the rate of insulin gene transcription. In contrast, exposure to elevated glucose for 48 h or more results in inhibition of the insulin gene promoter. Both of these processes depend on ERK1/2 activity. Expression of CHOP is induced by stresses including nutrient deprivation and endoplasmic reticulum stress. CHOP gene expression, especially that regulated by nutrients, is also ERK1/2-dependent in beta cells, These studies support the hypothesis that the genes regulated by ERK1/2 and the mechanisms employed are key to maintaining normal beta cell function.
MAPK pathways regulate transcription through phosphorylation of transcription factors and other DNA-binding proteins. In pancreatic -cells, ERK1/2 are required for transcription of the insulin gene and several other genes in response to glucose. We show that binding of glucose-sensitive transcription activators and repressors to the insulin gene promoter depends on ERK1/2 activity. We also find that glucose and NGF stimulate the binding of ERK1/2 to the insulin gene and other promoters. An ERK1/2 cascade module, including MEK1/2 and Rsk, are found in complexes bound to these promoters. These findings imply that MAPK-containing signaling complexes are positioned on sensitive promoters with their protein substrates to modulate transcription in situ in response to incoming signals.c-fos ͉ C/EBP- ͉ ERK1/2 ͉ hyperglycemia ͉ insulin gene transcription
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.