Microemulsions have found a wide range of applications exploiting their chemical and physical properties. Development of microfluidic-based approaches has allowed for the controlled production of highly monodispersed emulsions, including the formation of multiple and hierarchical emulsions. Conventional poly(dimethylsiloxane)-based microfluidic systems require tight spatial control over the surface chemistry when used for double emulsion generation, which can be challenging to achieve on the micrometer scale. Here, we present a twodimensional device design, which can selectively be surface-treated in a straightforward manner and allows for the formation of uniform water/ oil/water double emulsions by combining two distinct hydrophilic and hydrophobic surface properties. These surfaces are sufficiently separated in space to allow for imparting their functionalization without the requirement for lithographic approaches or complex flow control. We demonstrate that a mismatch between the wettability requirements of the continuous phase and the channel wall inherent in this approach can be tolerated over several hundreds of micrometers, opening up the possibility to use simple pressure-driven flows to achieve surface functionalization. The design architecture exhibits robust efficiency in emulsion generation while retaining simple device fabrication. We finally demonstrate the potential of this approach by generating water in oil in water emulsions with lipid molecules acting as surfactants.
Many biological molecules are by their nature amphiphilic and have the ability to act as surfactants, stabilizing interfaces between aqueous and immiscible oil phases. In this paper, we explore the adsorption kinetics of surfactin, a naturally occurring cyclic lipopeptide, at hexadecane/water interfaces and compare and contrast its adsorption behaviour with that of synthetic alkyl benzene sulfonate isomers, through direct measurements of changes in interfacial tension upon surfactant adsorption. We access millisecond time resolution in kinetic measurements by making use of droplet microfluidics to probe the interfacial tension of hexadecane droplets dispersed in a continuous water phase through monitoring their deformation when the droplets are exposed to shear flows in a microfluidic channel with regular corrugations. Our results reveal that surfactin rapidly adsorbs to the interface, thus the interfacial tension equilibrates within 300 ms, while the synthetic surfactants used undergo adsorption processes at an approximately one order of magnitude longer timescale. The approach presented may provide opportunities for understanding and modulating the adsorption mechanism of amphiphiles on a variety of interfaces in the context of life sciences and industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.