The blood–brain barrier (BBB) is a highly complex and dynamic structure, mainly composed of brain microvascular endothelial cells, pericytes, astrocytes and the basement membrane (BM). The vast majority of BBB research focuses on its cellular constituents. Its non-cellular component, the BM, on the other hand, is largely understudied due to its intrinsic complexity and the lack of research tools. In this review, we focus on the role of the BM in BBB integrity. We first briefly introduce the biochemical composition and structure of the BM. Next, the biological functions of major components of the BM in BBB formation and maintenance are discussed. Our goal is to provide a concise overview on how the BM contributes to BBB integrity.
Background: Mural cells synthesize and deposit laminin to the basement membrane. To investigate the function of mural cell-derived laminin, we generated a mutant mouse line lacking mural cell-derived laminin (termed PKO). In a previous study, we showed that the PKO mice were grossly normal under homeostatic condition, but developed blood-brain barrier (BBB) breakdown with advanced age (> 8 months), suggesting that these mutants are intrinsically weak. Based on these findings, we hypothesized that PKO mice have exacerbated injuries in pathological conditions. Methods: Using collagenase-induced intracerebral hemorrhage (ICH) as an injury model, we examined various stroke outcomes, including hematoma volume, neurological function, neuronal death, BBB integrity, paracellular/ transcellular transport, inflammatory cell infiltration, and brain water content, in PKO mice and their wildtype littermates at young age (6-8 weeks). In addition, transmission electron microscopy (TEM) analysis and an in vitro ICH model were used to investigate the underlying molecular mechanisms. Results: Compared to age-matched wildtype littermates, PKO mice display aggravated stroke outcomes, including larger hematoma size, worse neurological function, increased neuronal cell death, enhanced BBB permeability, increased transcytosis, and elevated inflammatory cell infiltration. These mutants also exhibit high baseline brain water content independent of aquaporin-4 (AQP4). In addition, mural cell-derived laminin significantly reduced caveolin-1 without affecting tight junction proteins in the in vitro ICH model. Conclusions: These results suggest that mural cell-derived laminin attenuates BBB damage in ICH via decreasing caveolin-1 and thus transcytosis, regulates brain water homeostasis, and plays a beneficial role in ICH.
NF-κB signaling regulates diverse processes such as cell death, inflammation, immunity, and cancer. The activity of NF-κB is controlled by methionine 1-linked linear polyubiquitin, which is assembled by the linear ubiquitin chain assembly complex (LUBAC) and the ubiquitin-conjugating enzyme UBE2L3. Recent studies found that the deubiquitinase OTULIN breaks the linear ubiquitin chain, thus inhibiting NF-κB signaling. Despite the essential role of OTULIN in NF-κB signaling has been established, the regulatory mechanism for OTULIN is not well elucidated. To discover the potential regulators of OTULIN, we analyzed the OTULIN protein complex by proteomics and revealed several OTULIN-binding proteins, including LUBAC and tripartite motif-containing protein 32 (TRIM32). TRIM32 is known to activate NF-κB signaling, but the mechanism is not clear. Genetic complement experiments found that TRIM32 is upstream of OTULIN and TRIM32-mediated NF-κB activation is dependent on OTULIN. Mutagenesis of the E3 ligase domain showed that the E3 ligase activity is essential for TRIM32-mediated NF-κB activation. Further experiments found that TRIM32 conjugates polyubiquitin onto OTULIN and the polyubiquitin blocks the interaction between HOIP and OTULIN, thereby activating NF-κB signaling. Taken together, we report a novel regulatory mechanism by which TRIM32-mediated non-proteolytic ubiquitination of OTULIN impedes the access of OTULIN to the LUBAC and promotes NF-κB activation.
Vesicular stomatitis virus (VSV) is a zoonotic, negative-stranded RNA virus of the family Rhabdoviridae. The nucleoprotein (N) of VSV protects the viral genomic RNA and plays an essential role in viral transcription and replication, which makes the nucleoprotein an ideal target of host defense. However, whether and how host innate/intrinsic immunity limits VSV infection by targeting the N protein are unknown. In this study, we found that the N protein of VSV (VSV-N) interacted with a ubiquitin E3 ligase, tripartite motif protein 41 (TRIM41). Overexpression of TRIM41 inhibited VSV infection. Conversely, the depletion of TRIM41 increased host susceptibility to VSV. Furthermore, the E3 ligase defective mutant of TRIM41 failed to limit VSV infection, suggesting the requirement of the E3 ligase activity of TRIM41 in viral restriction. Indeed, TRIM41 ubiquitinated VSV-N in cells and in vitro. TRIM41-mediated ubiquitination leads to the degradation of VSV-N through proteasome, thereby limiting VSV infection. Taken together, our study identifies TRIM41 as a new intrinsic immune factor against VSV by targeting the viral nucleoprotein for ubiquitination and subsequent protein degradation.
Fibroblasts are the most common cell type of connective tissues. In the central nervous system (CNS), fibroblast-like cells are mainly located in the meninges and perivascular Virchow-Robin space. The origins of these fibroblast-like cells and their functions in both CNS development and pathological conditions remain largely unknown. In this review, we first introduce the anatomic location and molecular markers of CNS fibroblast-like cells. Next, the functions of fibroblast-like cells in CNS development and neurological disorders, including stroke, CNS traumatic injuries, and other neurological diseases, are discussed. Third, current challenges and future directions in the field are summarized. We hope to provide a synthetic review that stimulates future research on CNS fibroblast-like cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.