CACNA1I, a schizophrenia risk gene, encodes a subtype of voltage-gated T-type calcium channel Ca V 3.3. We previously reported that a patient-derived missense de novo mutation (R1346H) of CACNA1I impaired Ca V 3.3 channel function. Here, we generated Ca V 3.3-RH knock-in animals, along with mice lacking Ca V 3.3, to investigate the biological impact of R1346H (RH) variation. We found that RH mutation altered cellular excitability in the thalamic reticular nucleus (TRN), where Ca V 3.3 is abundantly expressed. Moreover, RH mutation produced marked deficits in sleep spindle occurrence and morphology throughout non-rapid eye movement (NREM) sleep, while Ca V 3.3 haploinsufficiency gave rise to largely normal spindles. Therefore, mice harboring the RH mutation provide a patient derived genetic model not only to dissect the spindle biology but also to evaluate the effects of pharmacological reagents in normalizing sleep spindle deficits. Importantly, our analyses highlighted the significance of characterizing individual spindles and strengthen the inferences we can make across species over sleep spindles. In conclusion, this study established a translational link between a genetic allele and spindle deficits during NREM observed in schizophrenia patients, representing a key step toward testing the hypothesis that normalizing spindles may be beneficial for schizophrenia patients.
BackgroundCereulide is a cyclic dodecadepsipeptide ionophore, produced via non-ribosomal peptide synthetases (NRPS), which in rare cases can lead to human death. Early studies had shown that emetic toxin formation belongs to a homogeneous group of Bacillus cereus sensu stricto and the genetic determinants of cereulide (a 24-kb gene cluster of cesHPTABCD) are located on a 270-kb plasmid related to the Bacillus anthracis virulence plasmid pXO1.ResultsThe whole genome sequences from seven emetic isolates, including two B. cereus sensu stricto and five Bacillus weihenstephanensis strains, were compared, and their inside and adjacent DNA sequences of the cereulide biosynthesis gene clusters were analyzed. The sequence diversity was observed, which classified the seven emetic isolates into three clades. Different genomic locations of the cereulide biosynthesis gene clusters, plasmid-borne and chromosome-borne, were also found. Potential mobile genetic elements (MGEs) were identified in the flanking sequences of the ces gene cluster in all three types. The most striking observation was the identification of a putative composite transposon, Tnces, consisting of two copies of ISces element (belonging to IS6 family) in opposite orientations flanking the ces gene cluster in emetic B. weihenstephanensis. The mobility of this element was tested by replacing the ces gene cluster by a KmR gene marker and performing mating-out transposition assays in Escherichia coli. The results showed that Tnces::km transposes efficiently (1.04 × 10-3 T/R) and produces 8-bp direct repeat (DR) at the insertion sites.ConclusionsCereulide biosynthesis gene clusters display sequence diversity, different genomic locations and association with MGEs, in which the transposition capacity of a resistant derivative of the composite transposon Tnces in E. coli was demonstrated. Further study is needed to look for appropriate genetic tools to analysis the transposition of Tnces in Bacillus spp. and the dynamics of other MGEs flanking the ces gene clusters.
Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients.
Eight hundred and forty-six Chinese adolescents were surveyed concerning sleep behaviours including insomnia, nightmares, somniloquism, somnambulism, bruxism, and enuresis. Bruxism was reported most frequently (22%) followed by somniloquism (17%) and insomnia (14.9%). Subjects were compared by sex, age, and rearing by parents or parent surrogates. Cross cultural comparisons and the possible significance of findings are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.