Recently, actuating materials based on carbon nanotubes or graphene have been widely studied. However, present carbon‐based actuating materials are mostly driven by a single stimulus (humidity, light, electricity, etc.), respectively, which means that the application conditions are limited. Here, a new kind of multiresponsive actuating material which can be driven by humidity, light, and electricity is proposed, so it can be used in various conditions. The fabrication is based on the simplest pencil‐on‐paper method, in which the pencil and paper are both low‐cost and easily obtained daily materials. The actuation effect is more remarkable due to a dual‐mode actuation mechanism, which leads to an ultralarge actuation (bending curvature up to 2.6 cm−1). Elaborately designed, the actuator can further exhibit a bidirectional bending actuation, which is a significant improvement compared with previous reported thermal actuators. What is more, a colorful biomimetic flower and a smart curtain are also fabricated, fully utilizing the printable characteristic of the paper and multiresponsive characteristic of the actuator. It is assumed that the newly designed actuating material has great potential in the fields of lab‐on‐paper devices, artificial muscles, robotics, biomimics, and smart household materials.
Carbon-based electrothermal or photothermal actuators have attracted intense attention recently. They can directly convert electrical or light energy into thermal energy and exhibit obvious deformations. However, if the actuation mechanism is only limited to thermal expansion, the deformation amplitude is difficult to increase further. Moreover, complex shape-deformation is still challenging. Although a few materials were reported to realize twisting or untwisting actuation by cutting the samples into strips along different orientations, each single strip could perform only one shape-deformation mode. In this work, we propose multi-responsive actuators based on a graphene oxide (GO) and biaxially oriented polypropylene (BOPP) composite, which are designed with different shapes (strip-shape and helical-shape). The strip-shape GO/BOPP actuator shows great bending actuations when driven by humidity (curvature of up to 3.1 cm). Due to a developed dual-mode actuation mechanism, the actuator shows a bending curvature of 2.8 cm when driven by near infrared (NIR) light. The great actuation outperforms most other carbon-based actuators. Then, an intelligent robot based on the GO/BOPP composite is fabricated, which can switch between the protection mode and weightlifting mode with different external stimuli. Inspired from plant tendrils, a bioinspired helical GO/BOPP actuator is further realized to show both twisting and untwisting actuations in a single actuator, fully mimicking the deformation of plant tendrils. Finally, a robot arm consisting of strip-shape and helical GO/BOPP actuators can grasp an object that is 2.9 times heavier than itself, demonstrating promising bioinspired applications.
Metal species have a relatively high mobility inside mesoporous silica; thus, it is difficult to introduce the metal precursors into silica mesopores and suppress the migration of metal species during a reduction process. Therefore, until now, the controlled growth of metal nanocrystals in a confined space, i.e., mesoporous channels, has been very challenging. Here, by using a soft-enveloping reaction at the interfaces of the solid, liquid, and solution phases, we successfully control the growth of metallic nanocrystals inside a mesoporous silica template. Diverse monodispersed nanostructures with well-defined sizes and shapes, including Ag nanowires, 3D mesoporous Au, AuAg alloys, Pt networks, and Au nanoparticle superlattices are successfully obtained. The 3D mesoporous AuAg networks exhibit enhanced catalytic activities in an electrochemical methanol oxidation reaction. The current soft-enveloping synthetic strategy offers a robust approach to synthesize diverse mesoporous metal nanostructures that can be utilized in catalysis, optics, and biomedicine applications.
Head and neck squamous cell carcinoma (HNSCC) is a particularly aggressive cancer with poor prognosis, largely due to lymph node metastasis and local recurrence. Emerging evidence suggests that epithelial-to-mesenchymal transition (EMT) is important for cancer metastasis, and correlated with increased cancer stem cells (CSCs) characteristics. However, the mechanisms underlying metastasis to lymph nodes in HNSCC is poorly defined. In this study, we show that E-cadherin repression correlates with cancer metastasis and poor prognosis in HNSCC. We found that G9a, a histone methyltransferase, interacts with Snail and mediates Snail-induced transcriptional repression of E-cadherin and EMT, through methylation of histone H3 lysine-9 (H3K9). Moreover, G9a is required for both lymph node-related metastasis and TGF-β-induced EMT in HNSCC cells since knockdown of G9a reversed EMT, inhibited cell migration and tumorsphere formation, and suppressed the expression of CSC markers. Our study demonstrates that the G9a protein is essential for the induction of EMT and CSC-like properties in HNSCC. Thus, targeting the G9a-Snail axis may represent a novel strategy for treatment of metastatic HNSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.