A Biomimetic SLAM Algorithm Based on Growing Self-Organizing Map (GSOM-BSLAM), inspired by spatial cognitive mechanism of mammalian hippocampus, is proposed to resolve uncertainty problems in location identification and lack of real-time performance in simultaneous localization and mapping. The algorithm connects activation characteristics of the place cell and neurons in the output layer of the neural network to construct a topological map of space using a self-organizing growable mapping neural network. It utilizes self-motion-aware information to obtain activation response of the place cell to estimate the robot position information, improving the localization accuracy and real-time performance of the system. Meanwhile, an accurate environmental cognitive map is finally created by incorporating colordepth images for closed-loop detection and error correction for spatial cell path integration. The proposed algorithm is validated using publicly available KITTI and St. Lucia datasets. The experimental results demonstrate that the proposed algorithm outperforms RatSALM by 37.8% and 36.5% in terms of localization accuracy and real-time performance, respectively, indicating good mapping capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.