We propose to study multiple ergodic averages from multifractal analysis point of view. In some special cases in the symbolic dynamics, the Hausdorff dimensions of the level sets for the limit of these multiple ergodic averages are determined by using Riesz products.
Assume that x∈[0,1) admits its continued fraction expansion x=[a1(x),a2(x),…]. The Khintchine exponent γ(x) of x is defined by $\gamma (x):=\lim _{n\to \infty }({1}/{n}) \sum _{j=1}^n \log a_j(x)$ when the limit exists. The Khintchine spectrum dim Eξ is studied in detail, where Eξ:={x∈[0,1):γ(x)=ξ}(ξ≥0) and dim denotes the Hausdorff dimension. In particular, we prove the remarkable fact that the Khintchine spectrum dim Eξ, as a function of $\xi \in [0, +\infty )$, is neither concave nor convex. This is a new phenomenon from the usual point of view of multifractal analysis. Fast Khintchine exponents defined by $\gamma ^{\varphi }(x):=\lim _{n\to \infty }({1}/({\varphi (n)}))\sum _{j=1}^n \log a_j(x)$ are also studied, where φ(n) tends to infinity faster than n does. Under some regular conditions on φ, it is proved that the fast Khintchine spectrum dim ({x∈[0,1]:γφ(x)=ξ}) is a constant function. Our method also works for other spectra such as the Lyapunov spectrum and the fast Lyapunov spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.