Tuberculosis (TB) has been the leading lethal infectious disease worldwide since 2014, and about one third of the world’s population has a latent TB infection (LTBI). This is largely attributed to the difficulties in diagnosis and treatment of TB and LTBI patients. Exosomes offer a new perspective on investigation of the process of TB infection. In this study, we performed small RNA sequencing to explore small RNA profiles of serum exosomes derived from LTBI and TB patients and healthy controls (HC). Our results revealed distinct miRNA profile of the exosomes in the three groups. We screened 250 differentially expressed miRNAs including 130 specifically expressed miRNAs. Some miRNAs were further validated to be specifically expressed in LTBI (hsa-let-7e-5p, hsa-let-7d-5p, hsa-miR-450a-5p, and hsa-miR-140-5p) and TB samples (hsa-miR-1246, hsa-miR-2110, hsa-miR-370-3P, hsa-miR-28-3p, and hsa-miR-193b-5p). Additionally, we demonstrated four expression panels in LTBI and TB groups, and six expression patterns among the three groups. These specifically expressed miRNAs and differentially expressed miRNAs in different panels and patterns provide potential biomarkers for detection/diagnosis of latent and active TB using exosomal miRNAs. Additionally, we also discovered plenty of small RNAs derived from genomic repetitive sequences, which might play roles in host immune responses along with Mtb infection progresses. Overall, our findings provide important reference and an improved understanding about miRNAs and repetitive region-derived small RNAs in exosomes during the Mtb infectious process, and facilitate the development of potential molecular targets for detection/diagnosis of latent and active tuberculosis.
Background Tuberculosis is still a significant diagnostic and therapeutic challenge with high proportion of smear- and culture- negative incidences worldwide. The conventional diagnostic tests are time-consuming and have a low sensitivity. Digital PCR is a novel technology which can detect target sequences with relatively low abundance and obtain the absolute copy numbers of the targets. Methods We assessed the accuracy of dPCR in TB diagnosis using more than 250 specimens, and for the first time, we selected M.tuberculosis-specific IS1081 in addition to widely used IS6110 as the amplification targets for dPCR. The quantification of target DNA was calculated using QuantaSoft Version 1.7.4.0917 (BioRad), and SPSS version 13.0 software (SPSS Inc., Chicago, IL, USA) was used for statistical analyses. Results IS6110-dPCR was more sensitive than IS1081, with the sensitivity and specificity accounting for 40.6 and 93.4% respectively. When we classified the TB patients by personal factors for high copy number of M.tuberculosis derived DNA in plasma: bilateral TB, extrapulmonary TB and disseminated TB, the sensitivity of both IS6110- and IS1081- dPCR was the highest in patients with disseminated TB (IS6110, 100%; IS1081, 68.8%), while their sensitivity was a bit higher in patients with extrapulmonary TB (IS6110, 50.0%; IS1081, 39.3%) than that in bilateral TB (IS6110, 43.3%; IS1081, 33.3%). Compared with traditional TB diagnostic tests, joint detection IS6110 & IS1081-dPCR was not as sensitive as smear microscope or mycobacterial culture, but it was higher than IS6110 qPCR (p < 0.05) and was able to detect 47.4% of smear-negative TB patients. Conclusion Our study suggested that plasma IS6110-dPCR is a rapid, moderate accurate and less-invasive method to detect M.tuberculosis DNA in plasma of TB patients and IS6110 & IS1081-dPCR has a potential to aid diagnosis of smear-negative TB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.