Dendrite growth and parasitic side reactions are thorny issues that seriously damage the anode-electrolyte interface during Zn plating/stripping process, leading to uncontrollable Zn deposition and restraining application of aqueous Zn-ion batteries (AZIBs). Here, a unique facile strategy to in situ build indium (In) metal interphase on the Zn anode is first proposed. The combination of experimental and theoretical investigations demonstrate that such metallic interphase prevents the hydrogen evolution reaction (HER) and Zn corrosion, and guides preferential growth along the Zn(002) plane to achieve smooth Zn deposition. As a result, the modified Zn anodes achieve the ultrahigh cumulative capacities of 5600 and 5000 mAh cm −2 at the high current densities of 2 and 5 mA cm −2 , respectively, demonstrating an ultrastable plating/stripping behavior. More encouragingly, the rate performance and cyclic stability of the Zn-V 2 O 5 battery with the electrolyte additive can still deliver a specific capacity of 383.6 mAh g −1 after 5000 cycles at the high current density of 5 A g −1 . The strategy presented here as well as the in-depth understanding of modified mechanism can not only provide an effective solution to address the Zn anode concerns, but also deepen the understanding of AZIBs.
The use of nanomedicine for antitumor therapy has been extensively investigated for a long time. Enhanced permeability and retention (EPR) effect-mediated drug delivery is currently regarded as an effective way to bring drugs to tumors, especially macromolecular drugs and drug-loaded pharmaceutical nanocarriers. However, a disordered vessel network, and occluded or embolized tumor blood vessels seriously limit the EPR effect. To augment the EPR effect and improve curative effects, in this review, we focused on the perspective of tumor blood vessels, and analyzed the relationship among abnormal angiogenesis, abnormal vascular structure, irregular blood flow, extensive permeability of tumor vessels, and the EPR effect. In this commentary, nanoparticles including liposomes, micelles, and polymers extravasate through the tumor vasculature, which are based on modulating tumor vessels, to increase the EPR effect, thereby increasing their therapeutic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.