Age-related declines in motor learning may be related to poor visuospatial function. Thus, visuospatial testing could evaluate older adults’ potential for motor learning, which has implications for geriatric motor rehabilitation. To this end, the purpose of this study was to identify which visuospatial test is most predictive of motor learning within older adults. Forty-five nondemented older adults completed six standardized visuospatial tests, followed by three weekly practice sessions on a functional upper-extremity motor task. Participants were re-tested one month later on the trained task and another untrained upper-extremity motor task to evaluate the durability and generalizability of motor learning, respectively. Principal component analysis first reduced the dimensions of the visuospatial battery to two principal components for inclusion in a mixed-effects model that assessed one-month follow-up performance as a function of baseline performance and the principal components. Of the two components, only one was related to one-month follow-up. Factor loadings and post hoc analyses suggested that of the six visuospatial tests, the Rey-Osterrieth test (visual construction and memory) was related to one-month follow-up of the trained and untrained tasks. Thus, it may be plausible that older adults’ long-term motor learning capacity could be evaluated using the Rey-Osterrieth test, which would be feasible to administer prior to motor rehabilitation to indicate risk of non-responsiveness to therapy.
Motor learning is fundamental to motor rehabilitation outcomes and has been associated with visuospatial memory function in previous studies. Current predictive models of motor recovery of individuals with stroke generally exclude cognitive measures, overlooking the connection between motor learning and visuospatial memory. Recent work has demonstrated that a clinical test of visuospatial memory (Rey-Osterrieth Complex Figure Delayed Recall) may predict one-month skill learning in older adults, but if this relationship persists in individuals with chronic stroke remains unknown. The purpose of this short report was to extend these findings by evaluating the extent these test scores impacted prediction in older adults and determine if this relationship generalized to individuals with stroke pathology. To address these questions, we trained two regression models (one including Delayed Recall scores and one without) using data from non-stroke older adults. To determine the extent to which Delayed Recall test scores impacted prediction accuracy of one-month skill learning in older adults, we used leave-one-out cross-validation to evaluate the prediction error between models. To determine if this predictive relationship persisted in individuals with chronic ischemic stroke, we then tested each trained model on an independent stroke dataset. Results indicated that in both stroke and non-stroke datasets, inclusion of Delayed Recall scores explained significantly more variance of one-month skill performance than models that included age, education, and baseline motor performance alone. This proof-of-concept suggests that the relationship between delayed visuospatial memory and one-month motor skill performance generalizes to individuals with chronic stroke and supports the idea that visuospatial testing may provide prognostic insight into motor rehabilitation outcomes.
Skill retention is important for motor rehabilitation outcomes. Recent work has demonstrated that delayed visuospatial memory performance may predict motor skill retention in older and neuropathological populations. White matter integrity between parietal and frontal cortices may explain variance in upper-extremity motor learning tasks and visuospatial processes. We performed a whole-brain analysis to determine the white matter correlates of delayed visuospatial memory and one-week motor skill retention in nondemented older adults. We hypothesized that better frontoparietal tract integrity would be positively related to better behavioral performance. Nineteen participants (age>58) completed diffusion-weighted imaging, then a clinical test of delayed visuospatial memory and 50 training trials of an upper-extremity motor task; participants were retested on the motor task one week later. Principal component analysis was used to create a composite score for the behavioral data for each participant, i.e., shared variance between delayed visuospatial memory and motor skill retention, which was then entered into a voxel-based regression analysis. Behavioral results demonstrated that participants learned and retained their skill level after a week of no practice, and their delayed visuospatial memory score was positively related to the extent of skill retention. Consistent with previous work, neuroimaging results indicated that regions within bilateral anterior thalamic radiations, corticospinal tracts, and superior longitudinal fasciculi were related to better delayed visuospatial memory and skill retention. Results of this study suggest that the simple act of testing for specific cognitive impairments prior to therapy may identify older adults who will receive little to no benefit from the motor rehabilitation regimen, and that these neural regions may be potential targets for therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.