This paper proposes a novel document re-ranking approach in information retrieval, which is done by a label propagationbased semi-supervised learning algorithm to utilize the intrinsic structure underlying in the large document data. Since no labeled relevant or irrelevant documents are generally available in IR, our approach tries to extract some pseudo labeled documents from the ranking list of the initial retrieval. For pseudo relevant documents, we determine a cluster of documents from the top ones via cluster validation-based kmeans clustering; for pseudo irrelevant ones, we pick a set of documents from the bottom ones. Then the ranking of the documents can be conducted via label propagation. Evaluation on benchmark corpora shows that the approach can achieve significant improvement over standard baselines and performs better than other related approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.